(file) Return to regex.c CVS log (file) (dir) Up to [RizwankCVS] / testProject / compat

   1 rizwank 1.1 /* Extended regular expression matching and search library,
   2                version 0.12.
   3                (Implements POSIX draft P1003.2/D11.2, except for some of the
   4                internationalization features.)
   5             
   6                Copyright (C) 1993-1998 Free Software Foundation, Inc.
   7             
   8                This program is free software; you can redistribute it and/or modify
   9                it under the terms of the GNU General Public License as published by
  10                the Free Software Foundation; either version 2, or (at your option)
  11                any later version.
  12             
  13                This program is distributed in the hope that it will be useful,
  14                but WITHOUT ANY WARRANTY; without even the implied warranty of
  15                MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16                GNU General Public License for more details.
  17             
  18                You should have received a copy of the GNU General Public License
  19                along with this program; if not, write to the Free Software Foundation,
  20                Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
  21             
  22 rizwank 1.1 /* AIX requires this to be the first thing in the file. */
  23             #if defined (_AIX) && !defined (REGEX_MALLOC)
  24               #pragma alloca
  25             #endif
  26             
  27             #undef	_GNU_SOURCE
  28             #define _GNU_SOURCE
  29             
  30             #ifdef HAVE_CONFIG_H
  31             #include <config.h>
  32             #endif
  33             
  34             #if defined(STDC_HEADERS) && !defined(emacs)
  35             #include <stddef.h>
  36             #else
  37             /* We need this for `regex.h', and perhaps for the Emacs include files.  */
  38             #include <sys/types.h>
  39             #endif
  40             
  41             /* For platform which support the ISO C amendement 1 functionality we
  42                support user defined character classes.  */
  43 rizwank 1.1 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
  44             # include <wctype.h>
  45             # include <wchar.h>
  46             #endif
  47             
  48             /* This is for other GNU distributions with internationalized messages.  */
  49             #if HAVE_LIBINTL_H || defined (_LIBC)
  50             # include <libintl.h>
  51             #else
  52             # define gettext(msgid) (msgid)
  53             #endif
  54             
  55             #ifndef gettext_noop
  56             /* This define is so xgettext can find the internationalizable
  57                strings.  */
  58             #define gettext_noop(String) String
  59             #endif
  60             
  61             /* The `emacs' switch turns on certain matching commands
  62                that make sense only in Emacs. */
  63             #ifdef emacs
  64 rizwank 1.1 
  65             #include "lisp.h"
  66             #include "buffer.h"
  67             #include "syntax.h"
  68             
  69             #else  /* not emacs */
  70             
  71             /* If we are not linking with Emacs proper,
  72                we can't use the relocating allocator
  73                even if config.h says that we can.  */
  74             #undef REL_ALLOC
  75             
  76             #if defined (STDC_HEADERS) || defined (_LIBC)
  77             #include <stdlib.h>
  78             #else
  79             char *malloc ();
  80             char *realloc ();
  81             #endif
  82             
  83             /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
  84                If nothing else has been done, use the method below.  */
  85 rizwank 1.1 #ifdef INHIBIT_STRING_HEADER
  86             #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
  87             #if !defined (bzero) && !defined (bcopy)
  88             #undef INHIBIT_STRING_HEADER
  89             #endif
  90             #endif
  91             #endif
  92             
  93             /* This is the normal way of making sure we have a bcopy and a bzero.
  94                This is used in most programs--a few other programs avoid this
  95                by defining INHIBIT_STRING_HEADER.  */
  96             #ifndef INHIBIT_STRING_HEADER
  97             #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
  98             #include <string.h>
  99             #ifndef bcmp
 100             #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
 101             #endif
 102             #ifndef bcopy
 103             #define bcopy(s, d, n)	memcpy ((d), (s), (n))
 104             #endif
 105             #ifndef bzero
 106 rizwank 1.1 #define bzero(s, n)	memset ((s), 0, (n))
 107             #endif
 108             #else
 109             #include <strings.h>
 110             #endif
 111             #endif
 112             
 113             /* Define the syntax stuff for \<, \>, etc.  */
 114             
 115             /* This must be nonzero for the wordchar and notwordchar pattern
 116                commands in re_match_2.  */
 117             #ifndef Sword
 118             #define Sword 1
 119             #endif
 120             
 121             #ifdef SWITCH_ENUM_BUG
 122             #define SWITCH_ENUM_CAST(x) ((int)(x))
 123             #else
 124             #define SWITCH_ENUM_CAST(x) (x)
 125             #endif
 126             
 127 rizwank 1.1 #ifdef SYNTAX_TABLE
 128             
 129             extern char *re_syntax_table;
 130             
 131             #else /* not SYNTAX_TABLE */
 132             
 133             /* How many characters in the character set.  */
 134             #define CHAR_SET_SIZE 256
 135             
 136             static char re_syntax_table[CHAR_SET_SIZE];
 137             
 138             static void
 139             init_syntax_once ()
 140             {
 141                register int c;
 142                static int done = 0;
 143             
 144                if (done)
 145                  return;
 146             
 147                bzero (re_syntax_table, sizeof re_syntax_table);
 148 rizwank 1.1 
 149                for (c = 'a'; c <= 'z'; c++)
 150                  re_syntax_table[c] = Sword;
 151             
 152                for (c = 'A'; c <= 'Z'; c++)
 153                  re_syntax_table[c] = Sword;
 154             
 155                for (c = '0'; c <= '9'; c++)
 156                  re_syntax_table[c] = Sword;
 157             
 158                re_syntax_table['_'] = Sword;
 159             
 160                done = 1;
 161             }
 162             
 163             #endif /* not SYNTAX_TABLE */
 164             
 165             #define SYNTAX(c) re_syntax_table[c]
 166             
 167             #endif /* not emacs */
 168             
 169 rizwank 1.1 /* Get the interface, including the syntax bits.  */
 170             #include "regex.h"
 171             
 172             /* isalpha etc. are used for the character classes.  */
 173             #include <ctype.h>
 174             
 175             /* Jim Meyering writes:
 176             
 177                "... Some ctype macros are valid only for character codes that
 178                isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
 179                using /bin/cc or gcc but without giving an ansi option).  So, all
 180                ctype uses should be through macros like ISPRINT...  If
 181                STDC_HEADERS is defined, then autoconf has verified that the ctype
 182                macros don't need to be guarded with references to isascii. ...
 183                Defining isascii to 1 should let any compiler worth its salt
 184                eliminate the && through constant folding."  */
 185             
 186             #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
 187             #define ISASCII(c) 1
 188             #else
 189             #define ISASCII(c) isascii(c)
 190 rizwank 1.1 #endif
 191             
 192             #ifdef isblank
 193             #define ISBLANK(c) (ISASCII (c) && isblank (c))
 194             #else
 195             #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
 196             #endif
 197             #ifdef isgraph
 198             #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
 199             #else
 200             #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
 201             #endif
 202             
 203             #define ISPRINT(c) (ISASCII (c) && isprint (c))
 204             #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
 205             #define ISALNUM(c) (ISASCII (c) && isalnum (c))
 206             #define ISALPHA(c) (ISASCII (c) && isalpha (c))
 207             #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
 208             #define ISLOWER(c) (ISASCII (c) && islower (c))
 209             #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
 210             #define ISSPACE(c) (ISASCII (c) && isspace (c))
 211 rizwank 1.1 #define ISUPPER(c) (ISASCII (c) && isupper (c))
 212             #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
 213             
 214             #ifndef NULL
 215             #define NULL (void *)0
 216             #endif
 217             
 218             /* We remove any previous definition of `SIGN_EXTEND_CHAR',
 219                since ours (we hope) works properly with all combinations of
 220                machines, compilers, `char' and `unsigned char' argument types.
 221                (Per Bothner suggested the basic approach.)  */
 222             #undef SIGN_EXTEND_CHAR
 223             #if __STDC__
 224             #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
 225             #else  /* not __STDC__ */
 226             /* As in Harbison and Steele.  */
 227             #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
 228             #endif
 229             
 230             /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
 231                use `alloca' instead of `malloc'.  This is because using malloc in
 232 rizwank 1.1    re_search* or re_match* could cause memory leaks when C-g is used in
 233                Emacs; also, malloc is slower and causes storage fragmentation.  On
 234                the other hand, malloc is more portable, and easier to debug.
 235             
 236                Because we sometimes use alloca, some routines have to be macros,
 237                not functions -- `alloca'-allocated space disappears at the end of the
 238                function it is called in.  */
 239             
 240             #ifdef REGEX_MALLOC
 241             
 242             #define REGEX_ALLOCATE malloc
 243             #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
 244             #define REGEX_FREE free
 245             
 246             #else /* not REGEX_MALLOC  */
 247             
 248             /* Emacs already defines alloca, sometimes.  */
 249             #ifndef alloca
 250             
 251             /* Make alloca work the best possible way.  */
 252             #ifdef __GNUC__
 253 rizwank 1.1 #define alloca __builtin_alloca
 254             #else /* not __GNUC__ */
 255             #if HAVE_ALLOCA_H
 256             #include <alloca.h>
 257             #else /* not __GNUC__ or HAVE_ALLOCA_H */
 258             #if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
 259             #ifndef _AIX /* Already did AIX, up at the top.  */
 260             char *alloca ();
 261             #endif /* not _AIX */
 262             #endif
 263             #endif /* not HAVE_ALLOCA_H */
 264             #endif /* not __GNUC__ */
 265             
 266             #endif /* not alloca */
 267             
 268             #define REGEX_ALLOCATE alloca
 269             
 270             /* Assumes a `char *destination' variable.  */
 271             #define REGEX_REALLOCATE(source, osize, nsize)				\
 272               (destination = (char *) alloca (nsize),				\
 273                bcopy (source, destination, osize),					\
 274 rizwank 1.1    destination)
 275             
 276             /* No need to do anything to free, after alloca.  */
 277             #define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
 278             
 279             #endif /* not REGEX_MALLOC */
 280             
 281             /* Define how to allocate the failure stack.  */
 282             
 283             #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
 284             
 285             #define REGEX_ALLOCATE_STACK(size)				\
 286               r_alloc (&failure_stack_ptr, (size))
 287             #define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
 288               r_re_alloc (&failure_stack_ptr, (nsize))
 289             #define REGEX_FREE_STACK(ptr)					\
 290               r_alloc_free (&failure_stack_ptr)
 291             
 292             #else /* not using relocating allocator */
 293             
 294             #ifdef REGEX_MALLOC
 295 rizwank 1.1 
 296             #define REGEX_ALLOCATE_STACK malloc
 297             #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
 298             #define REGEX_FREE_STACK free
 299             
 300             #else /* not REGEX_MALLOC */
 301             
 302             #define REGEX_ALLOCATE_STACK alloca
 303             
 304             #define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
 305                REGEX_REALLOCATE (source, osize, nsize)
 306             /* No need to explicitly free anything.  */
 307             #define REGEX_FREE_STACK(arg)
 308             
 309             #endif /* not REGEX_MALLOC */
 310             #endif /* not using relocating allocator */
 311             
 312             
 313             /* True if `size1' is non-NULL and PTR is pointing anywhere inside
 314                `string1' or just past its end.  This works if PTR is NULL, which is
 315                a good thing.  */
 316 rizwank 1.1 #define FIRST_STRING_P(ptr) 					\
 317               (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
 318             
 319             /* (Re)Allocate N items of type T using malloc, or fail.  */
 320             #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
 321             #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
 322             #define RETALLOC_IF(addr, n, t) \
 323               if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
 324             #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
 325             
 326             #define BYTEWIDTH 8 /* In bits.  */
 327             
 328             #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
 329             
 330             #undef MAX
 331             #undef MIN
 332             #define MAX(a, b) ((a) > (b) ? (a) : (b))
 333             #define MIN(a, b) ((a) < (b) ? (a) : (b))
 334             
 335             typedef char boolean;
 336             #define false 0
 337 rizwank 1.1 #define true 1
 338             
 339             static int re_match_2_internal ();
 340             
 341             /* These are the command codes that appear in compiled regular
 342                expressions.  Some opcodes are followed by argument bytes.  A
 343                command code can specify any interpretation whatsoever for its
 344                arguments.  Zero bytes may appear in the compiled regular expression.  */
 345             
 346             typedef enum
 347             {
 348               no_op = 0,
 349             
 350               /* Succeed right away--no more backtracking.  */
 351               succeed,
 352             
 353                     /* Followed by one byte giving n, then by n literal bytes.  */
 354               exactn,
 355             
 356                     /* Matches any (more or less) character.  */
 357               anychar,
 358 rizwank 1.1 
 359                     /* Matches any one char belonging to specified set.  First
 360                        following byte is number of bitmap bytes.  Then come bytes
 361                        for a bitmap saying which chars are in.  Bits in each byte
 362                        are ordered low-bit-first.  A character is in the set if its
 363                        bit is 1.  A character too large to have a bit in the map is
 364                        automatically not in the set.  */
 365               charset,
 366             
 367                     /* Same parameters as charset, but match any character that is
 368                        not one of those specified.  */
 369               charset_not,
 370             
 371                     /* Start remembering the text that is matched, for storing in a
 372                        register.  Followed by one byte with the register number, in
 373                        the range 0 to one less than the pattern buffer's re_nsub
 374                        field.  Then followed by one byte with the number of groups
 375                        inner to this one.  (This last has to be part of the
 376                        start_memory only because we need it in the on_failure_jump
 377                        of re_match_2.)  */
 378               start_memory,
 379 rizwank 1.1 
 380                     /* Stop remembering the text that is matched and store it in a
 381                        memory register.  Followed by one byte with the register
 382                        number, in the range 0 to one less than `re_nsub' in the
 383                        pattern buffer, and one byte with the number of inner groups,
 384                        just like `start_memory'.  (We need the number of inner
 385                        groups here because we don't have any easy way of finding the
 386                        corresponding start_memory when we're at a stop_memory.)  */
 387               stop_memory,
 388             
 389                     /* Match a duplicate of something remembered. Followed by one
 390                        byte containing the register number.  */
 391               duplicate,
 392             
 393                     /* Fail unless at beginning of line.  */
 394               begline,
 395             
 396                     /* Fail unless at end of line.  */
 397               endline,
 398             
 399                     /* Succeeds if at beginning of buffer (if emacs) or at beginning
 400 rizwank 1.1            of string to be matched (if not).  */
 401               begbuf,
 402             
 403                     /* Analogously, for end of buffer/string.  */
 404               endbuf,
 405             
 406                     /* Followed by two byte relative address to which to jump.  */
 407               jump,
 408             
 409             	/* Same as jump, but marks the end of an alternative.  */
 410               jump_past_alt,
 411             
 412                     /* Followed by two-byte relative address of place to resume at
 413                        in case of failure.  */
 414               on_failure_jump,
 415             
 416                     /* Like on_failure_jump, but pushes a placeholder instead of the
 417                        current string position when executed.  */
 418               on_failure_keep_string_jump,
 419             
 420                     /* Throw away latest failure point and then jump to following
 421 rizwank 1.1            two-byte relative address.  */
 422               pop_failure_jump,
 423             
 424                     /* Change to pop_failure_jump if know won't have to backtrack to
 425                        match; otherwise change to jump.  This is used to jump
 426                        back to the beginning of a repeat.  If what follows this jump
 427                        clearly won't match what the repeat does, such that we can be
 428                        sure that there is no use backtracking out of repetitions
 429                        already matched, then we change it to a pop_failure_jump.
 430                        Followed by two-byte address.  */
 431               maybe_pop_jump,
 432             
 433                     /* Jump to following two-byte address, and push a dummy failure
 434                        point. This failure point will be thrown away if an attempt
 435                        is made to use it for a failure.  A `+' construct makes this
 436                        before the first repeat.  Also used as an intermediary kind
 437                        of jump when compiling an alternative.  */
 438               dummy_failure_jump,
 439             
 440             	/* Push a dummy failure point and continue.  Used at the end of
 441             	   alternatives.  */
 442 rizwank 1.1   push_dummy_failure,
 443             
 444                     /* Followed by two-byte relative address and two-byte number n.
 445                        After matching N times, jump to the address upon failure.  */
 446               succeed_n,
 447             
 448                     /* Followed by two-byte relative address, and two-byte number n.
 449                        Jump to the address N times, then fail.  */
 450               jump_n,
 451             
 452                     /* Set the following two-byte relative address to the
 453                        subsequent two-byte number.  The address *includes* the two
 454                        bytes of number.  */
 455               set_number_at,
 456             
 457               wordchar,	/* Matches any word-constituent character.  */
 458               notwordchar,	/* Matches any char that is not a word-constituent.  */
 459             
 460               wordbeg,	/* Succeeds if at word beginning.  */
 461               wordend,	/* Succeeds if at word end.  */
 462             
 463 rizwank 1.1   wordbound,	/* Succeeds if at a word boundary.  */
 464               notwordbound	/* Succeeds if not at a word boundary.  */
 465             
 466             #ifdef emacs
 467               ,before_dot,	/* Succeeds if before point.  */
 468               at_dot,	/* Succeeds if at point.  */
 469               after_dot,	/* Succeeds if after point.  */
 470             
 471             	/* Matches any character whose syntax is specified.  Followed by
 472                        a byte which contains a syntax code, e.g., Sword.  */
 473               syntaxspec,
 474             
 475             	/* Matches any character whose syntax is not that specified.  */
 476               notsyntaxspec
 477             #endif /* emacs */
 478             } re_opcode_t;
 479             
 480             /* Common operations on the compiled pattern.  */
 481             
 482             /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
 483             
 484 rizwank 1.1 #define STORE_NUMBER(destination, number)				\
 485               do {									\
 486                 (destination)[0] = (number) & 0377;					\
 487                 (destination)[1] = (number) >> 8;					\
 488               } while (0)
 489             
 490             /* Same as STORE_NUMBER, except increment DESTINATION to
 491                the byte after where the number is stored.  Therefore, DESTINATION
 492                must be an lvalue.  */
 493             
 494             #define STORE_NUMBER_AND_INCR(destination, number)			\
 495               do {									\
 496                 STORE_NUMBER (destination, number);					\
 497                 (destination) += 2;							\
 498               } while (0)
 499             
 500             /* Put into DESTINATION a number stored in two contiguous bytes starting
 501                at SOURCE.  */
 502             
 503             #define EXTRACT_NUMBER(destination, source)				\
 504               do {									\
 505 rizwank 1.1     (destination) = *(source) & 0377;					\
 506                 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
 507               } while (0)
 508             
 509             #ifdef DEBUG
 510             static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
 511             static void
 512             extract_number (dest, source)
 513                 int *dest;
 514                 unsigned char *source;
 515             {
 516               int temp = SIGN_EXTEND_CHAR (*(source + 1));
 517               *dest = *source & 0377;
 518               *dest += temp << 8;
 519             }
 520             
 521             #ifndef EXTRACT_MACROS /* To debug the macros.  */
 522             #undef EXTRACT_NUMBER
 523             #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
 524             #endif /* not EXTRACT_MACROS */
 525             
 526 rizwank 1.1 #endif /* DEBUG */
 527             
 528             /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
 529                SOURCE must be an lvalue.  */
 530             
 531             #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
 532               do {									\
 533                 EXTRACT_NUMBER (destination, source);				\
 534                 (source) += 2; 							\
 535               } while (0)
 536             
 537             #ifdef DEBUG
 538             static void extract_number_and_incr _RE_ARGS ((int *destination,
 539             					       unsigned char **source));
 540             static void
 541             extract_number_and_incr (destination, source)
 542                 int *destination;
 543                 unsigned char **source;
 544             {
 545               extract_number (destination, *source);
 546               *source += 2;
 547 rizwank 1.1 }
 548             
 549             #ifndef EXTRACT_MACROS
 550             #undef EXTRACT_NUMBER_AND_INCR
 551             #define EXTRACT_NUMBER_AND_INCR(dest, src) \
 552               extract_number_and_incr (&dest, &src)
 553             #endif /* not EXTRACT_MACROS */
 554             
 555             #endif /* DEBUG */
 556             
 557             /* If DEBUG is defined, Regex prints many voluminous messages about what
 558                it is doing (if the variable `debug' is nonzero).  If linked with the
 559                main program in `iregex.c', you can enter patterns and strings
 560                interactively.  And if linked with the main program in `main.c' and
 561                the other test files, you can run the already-written tests.  */
 562             
 563             #ifdef DEBUG
 564             
 565             /* We use standard I/O for debugging.  */
 566             #include <stdio.h>
 567             
 568 rizwank 1.1 /* It is useful to test things that ``must'' be true when debugging.  */
 569             #include <assert.h>
 570             
 571             static int debug = 0;
 572             
 573             #define DEBUG_STATEMENT(e) e
 574             #define DEBUG_PRINT1(x) if (debug) printf (x)
 575             #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
 576             #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
 577             #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
 578             #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
 579               if (debug) print_partial_compiled_pattern (s, e)
 580             #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
 581               if (debug) print_double_string (w, s1, sz1, s2, sz2)
 582             
 583             
 584             /* Print the fastmap in human-readable form.  */
 585             
 586             void
 587             print_fastmap (fastmap)
 588                 char *fastmap;
 589 rizwank 1.1 {
 590               unsigned was_a_range = 0;
 591               unsigned i = 0;
 592             
 593               while (i < (1 << BYTEWIDTH))
 594                 {
 595                   if (fastmap[i++])
 596             	{
 597             	  was_a_range = 0;
 598                       putchar (i - 1);
 599                       while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
 600                         {
 601                           was_a_range = 1;
 602                           i++;
 603                         }
 604             	  if (was_a_range)
 605                         {
 606                           printf ("-");
 607                           putchar (i - 1);
 608                         }
 609                     }
 610 rizwank 1.1     }
 611               putchar ('\n');
 612             }
 613             
 614             
 615             /* Print a compiled pattern string in human-readable form, starting at
 616                the START pointer into it and ending just before the pointer END.  */
 617             
 618             void
 619             print_partial_compiled_pattern (start, end)
 620                 unsigned char *start;
 621                 unsigned char *end;
 622             {
 623               int mcnt, mcnt2;
 624               unsigned char *p1;
 625               unsigned char *p = start;
 626               unsigned char *pend = end;
 627             
 628               if (start == NULL)
 629                 {
 630                   printf ("(null)\n");
 631 rizwank 1.1       return;
 632                 }
 633             
 634               /* Loop over pattern commands.  */
 635               while (p < pend)
 636                 {
 637                   printf ("%d:\t", p - start);
 638             
 639                   switch ((re_opcode_t) *p++)
 640             	{
 641                     case no_op:
 642                       printf ("/no_op");
 643                       break;
 644             
 645             	case exactn:
 646             	  mcnt = *p++;
 647                       printf ("/exactn/%d", mcnt);
 648                       do
 649             	    {
 650                           putchar ('/');
 651             	      putchar (*p++);
 652 rizwank 1.1             }
 653                       while (--mcnt);
 654                       break;
 655             
 656             	case start_memory:
 657                       mcnt = *p++;
 658                       printf ("/start_memory/%d/%d", mcnt, *p++);
 659                       break;
 660             
 661             	case stop_memory:
 662                       mcnt = *p++;
 663             	  printf ("/stop_memory/%d/%d", mcnt, *p++);
 664                       break;
 665             
 666             	case duplicate:
 667             	  printf ("/duplicate/%d", *p++);
 668             	  break;
 669             
 670             	case anychar:
 671             	  printf ("/anychar");
 672             	  break;
 673 rizwank 1.1 
 674             	case charset:
 675                     case charset_not:
 676                       {
 677                         register int c, last = -100;
 678             	    register int in_range = 0;
 679             
 680             	    printf ("/charset [%s",
 681             	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
 682             
 683                         assert (p + *p < pend);
 684             
 685                         for (c = 0; c < 256; c++)
 686             	      if (c / 8 < *p
 687             		  && (p[1 + (c/8)] & (1 << (c % 8))))
 688             		{
 689             		  /* Are we starting a range?  */
 690             		  if (last + 1 == c && ! in_range)
 691             		    {
 692             		      putchar ('-');
 693             		      in_range = 1;
 694 rizwank 1.1 		    }
 695             		  /* Have we broken a range?  */
 696             		  else if (last + 1 != c && in_range)
 697                           {
 698             		      putchar (last);
 699             		      in_range = 0;
 700             		    }
 701             
 702             		  if (! in_range)
 703             		    putchar (c);
 704             
 705             		  last = c;
 706                           }
 707             
 708             	    if (in_range)
 709             	      putchar (last);
 710             
 711             	    putchar (']');
 712             
 713             	    p += 1 + *p;
 714             	  }
 715 rizwank 1.1 	  break;
 716             
 717             	case begline:
 718             	  printf ("/begline");
 719                       break;
 720             
 721             	case endline:
 722                       printf ("/endline");
 723                       break;
 724             
 725             	case on_failure_jump:
 726                       extract_number_and_incr (&mcnt, &p);
 727               	  printf ("/on_failure_jump to %d", p + mcnt - start);
 728                       break;
 729             
 730             	case on_failure_keep_string_jump:
 731                       extract_number_and_incr (&mcnt, &p);
 732               	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
 733                       break;
 734             
 735             	case dummy_failure_jump:
 736 rizwank 1.1           extract_number_and_incr (&mcnt, &p);
 737               	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
 738                       break;
 739             
 740             	case push_dummy_failure:
 741                       printf ("/push_dummy_failure");
 742                       break;
 743             
 744                     case maybe_pop_jump:
 745                       extract_number_and_incr (&mcnt, &p);
 746               	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
 747             	  break;
 748             
 749                     case pop_failure_jump:
 750             	  extract_number_and_incr (&mcnt, &p);
 751               	  printf ("/pop_failure_jump to %d", p + mcnt - start);
 752             	  break;
 753             
 754                     case jump_past_alt:
 755             	  extract_number_and_incr (&mcnt, &p);
 756               	  printf ("/jump_past_alt to %d", p + mcnt - start);
 757 rizwank 1.1 	  break;
 758             
 759                     case jump:
 760             	  extract_number_and_incr (&mcnt, &p);
 761               	  printf ("/jump to %d", p + mcnt - start);
 762             	  break;
 763             
 764                     case succeed_n:
 765                       extract_number_and_incr (&mcnt, &p);
 766             	  p1 = p + mcnt;
 767                       extract_number_and_incr (&mcnt2, &p);
 768             	  printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
 769                       break;
 770             
 771                     case jump_n:
 772                       extract_number_and_incr (&mcnt, &p);
 773             	  p1 = p + mcnt;
 774                       extract_number_and_incr (&mcnt2, &p);
 775             	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
 776                       break;
 777             
 778 rizwank 1.1         case set_number_at:
 779                       extract_number_and_incr (&mcnt, &p);
 780             	  p1 = p + mcnt;
 781                       extract_number_and_incr (&mcnt2, &p);
 782             	  printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
 783                       break;
 784             
 785                     case wordbound:
 786             	  printf ("/wordbound");
 787             	  break;
 788             
 789             	case notwordbound:
 790             	  printf ("/notwordbound");
 791                       break;
 792             
 793             	case wordbeg:
 794             	  printf ("/wordbeg");
 795             	  break;
 796             
 797             	case wordend:
 798             	  printf ("/wordend");
 799 rizwank 1.1 
 800             #ifdef emacs
 801             	case before_dot:
 802             	  printf ("/before_dot");
 803                       break;
 804             
 805             	case at_dot:
 806             	  printf ("/at_dot");
 807                       break;
 808             
 809             	case after_dot:
 810             	  printf ("/after_dot");
 811                       break;
 812             
 813             	case syntaxspec:
 814                       printf ("/syntaxspec");
 815             	  mcnt = *p++;
 816             	  printf ("/%d", mcnt);
 817                       break;
 818             
 819             	case notsyntaxspec:
 820 rizwank 1.1           printf ("/notsyntaxspec");
 821             	  mcnt = *p++;
 822             	  printf ("/%d", mcnt);
 823             	  break;
 824             #endif /* emacs */
 825             
 826             	case wordchar:
 827             	  printf ("/wordchar");
 828                       break;
 829             
 830             	case notwordchar:
 831             	  printf ("/notwordchar");
 832                       break;
 833             
 834             	case begbuf:
 835             	  printf ("/begbuf");
 836                       break;
 837             
 838             	case endbuf:
 839             	  printf ("/endbuf");
 840                       break;
 841 rizwank 1.1 
 842                     default:
 843                       printf ("?%d", *(p-1));
 844             	}
 845             
 846                   putchar ('\n');
 847                 }
 848             
 849               printf ("%d:\tend of pattern.\n", p - start);
 850             }
 851             
 852             
 853             void
 854             print_compiled_pattern (bufp)
 855                 struct re_pattern_buffer *bufp;
 856             {
 857               unsigned char *buffer = bufp->buffer;
 858             
 859               print_partial_compiled_pattern (buffer, buffer + bufp->used);
 860               printf ("%ld bytes used/%ld bytes allocated.\n",
 861             	  bufp->used, bufp->allocated);
 862 rizwank 1.1 
 863               if (bufp->fastmap_accurate && bufp->fastmap)
 864                 {
 865                   printf ("fastmap: ");
 866                   print_fastmap (bufp->fastmap);
 867                 }
 868             
 869               printf ("re_nsub: %d\t", bufp->re_nsub);
 870               printf ("regs_alloc: %d\t", bufp->regs_allocated);
 871               printf ("can_be_null: %d\t", bufp->can_be_null);
 872               printf ("newline_anchor: %d\n", bufp->newline_anchor);
 873               printf ("no_sub: %d\t", bufp->no_sub);
 874               printf ("not_bol: %d\t", bufp->not_bol);
 875               printf ("not_eol: %d\t", bufp->not_eol);
 876               printf ("syntax: %lx\n", bufp->syntax);
 877               /* Perhaps we should print the translate table?  */
 878             }
 879             
 880             
 881             void
 882             print_double_string (where, string1, size1, string2, size2)
 883 rizwank 1.1     const char *where;
 884                 const char *string1;
 885                 const char *string2;
 886                 int size1;
 887                 int size2;
 888             {
 889               int this_char;
 890             
 891               if (where == NULL)
 892                 printf ("(null)");
 893               else
 894                 {
 895                   if (FIRST_STRING_P (where))
 896                     {
 897                       for (this_char = where - string1; this_char < size1; this_char++)
 898                         putchar (string1[this_char]);
 899             
 900                       where = string2;
 901                     }
 902             
 903                   for (this_char = where - string2; this_char < size2; this_char++)
 904 rizwank 1.1         putchar (string2[this_char]);
 905                 }
 906             }
 907             
 908             void
 909             printchar (c)
 910                  int c;
 911             {
 912               putc (c, stderr);
 913             }
 914             
 915             #else /* not DEBUG */
 916             
 917             #undef assert
 918             #define assert(e)
 919             
 920             #define DEBUG_STATEMENT(e)
 921             #define DEBUG_PRINT1(x)
 922             #define DEBUG_PRINT2(x1, x2)
 923             #define DEBUG_PRINT3(x1, x2, x3)
 924             #define DEBUG_PRINT4(x1, x2, x3, x4)
 925 rizwank 1.1 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
 926             #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
 927             
 928             #endif /* not DEBUG */
 929             
 930             /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
 931                also be assigned to arbitrarily: each pattern buffer stores its own
 932                syntax, so it can be changed between regex compilations.  */
 933             /* This has no initializer because initialized variables in Emacs
 934                become read-only after dumping.  */
 935             reg_syntax_t re_syntax_options;
 936             
 937             
 938             /* Specify the precise syntax of regexps for compilation.  This provides
 939                for compatibility for various utilities which historically have
 940                different, incompatible syntaxes.
 941             
 942                The argument SYNTAX is a bit mask comprised of the various bits
 943                defined in regex.h.  We return the old syntax.  */
 944             
 945             reg_syntax_t
 946 rizwank 1.1 re_set_syntax (syntax)
 947                 reg_syntax_t syntax;
 948             {
 949               reg_syntax_t ret = re_syntax_options;
 950             
 951               re_syntax_options = syntax;
 952             #ifdef DEBUG
 953               if (syntax & RE_DEBUG)
 954                 debug = 1;
 955               else if (debug) /* was on but now is not */
 956                 debug = 0;
 957             #endif /* DEBUG */
 958               return ret;
 959             }
 960             
 961             void
 962             #if __STDC__
 963             re_set_character_syntax (unsigned char ch, char syntax)
 964             #else
 965             re_set_character_syntax (ch, syntax)
 966                  unsigned char ch;
 967 rizwank 1.1      char syntax;
 968             #endif /* not __STDC__ */
 969             {
 970               init_syntax_once ();
 971             
 972               switch (syntax)
 973                 {
 974                 case 'w':
 975                   SYNTAX (ch) = Sword;
 976                   break;
 977             
 978                 case ' ':
 979                   SYNTAX (ch) = 0;
 980                   break;
 981             
 982                 default:
 983                   /* This is an error, but we don't care. */
 984                   break;
 985                 }
 986             }
 987             
 988 rizwank 1.1 
 989             /* This table gives an error message for each of the error codes listed
 990                in regex.h.  Obviously the order here has to be same as there.
 991                POSIX doesn't require that we do anything for REG_NOERROR,
 992                but why not be nice?  */
 993             
 994             static const char *re_error_msgid[] =
 995               {
 996                 gettext_noop ("Success"),	/* REG_NOERROR */
 997                 gettext_noop ("No match"),	/* REG_NOMATCH */
 998                 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
 999                 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1000                 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1001                 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1002                 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1003                 gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1004                 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1005                 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1006                 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1007                 gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1008                 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1009 rizwank 1.1     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1010                 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1011                 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1012                 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1013               };
1014             
1015             /* Avoiding alloca during matching, to placate r_alloc.  */
1016             
1017             /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1018                searching and matching functions should not call alloca.  On some
1019                systems, alloca is implemented in terms of malloc, and if we're
1020                using the relocating allocator routines, then malloc could cause a
1021                relocation, which might (if the strings being searched are in the
1022                ralloc heap) shift the data out from underneath the regexp
1023                routines.
1024             
1025                Here's another reason to avoid allocation: Emacs
1026                processes input from X in a signal handler; processing X input may
1027                call malloc; if input arrives while a matching routine is calling
1028                malloc, then we're scrod.  But Emacs can't just block input while
1029                calling matching routines; then we don't notice interrupts when
1030 rizwank 1.1    they come in.  So, Emacs blocks input around all regexp calls
1031                except the matching calls, which it leaves unprotected, in the
1032                faith that they will not malloc.  */
1033             
1034             /* Normally, this is fine.  */
1035             #define MATCH_MAY_ALLOCATE
1036             
1037             /* When using GNU C, we are not REALLY using the C alloca, no matter
1038                what config.h may say.  So don't take precautions for it.  */
1039             #ifdef __GNUC__
1040             #undef C_ALLOCA
1041             #endif
1042             
1043             /* The match routines may not allocate if (1) they would do it with malloc
1044                and (2) it's not safe for them to use malloc.
1045                Note that if REL_ALLOC is defined, matching would not use malloc for the
1046                failure stack, but we would still use it for the register vectors;
1047                so REL_ALLOC should not affect this.  */
1048             #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1049             #undef MATCH_MAY_ALLOCATE
1050             #endif
1051 rizwank 1.1 
1052             
1053             /* Failure stack declarations and macros; both re_compile_fastmap and
1054                re_match_2 use a failure stack.  These have to be macros because of
1055                REGEX_ALLOCATE_STACK.  */
1056             
1057             
1058             /* Number of failure points for which to initially allocate space
1059                when matching.  If this number is exceeded, we allocate more
1060                space, so it is not a hard limit.  */
1061             #ifndef INIT_FAILURE_ALLOC
1062             #define INIT_FAILURE_ALLOC 5
1063             #endif
1064             
1065             /* Roughly the maximum number of failure points on the stack.  Would be
1066                exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1067                This is a variable only so users of regex can assign to it; we never
1068                change it ourselves.  */
1069             
1070             #ifdef INT_IS_16BIT
1071             
1072 rizwank 1.1 #if defined (MATCH_MAY_ALLOCATE)
1073             /* 4400 was enough to cause a crash on Alpha OSF/1,
1074                whose default stack limit is 2mb.  */
1075             long int re_max_failures = 4000;
1076             #else
1077             long int re_max_failures = 2000;
1078             #endif
1079             
1080             union fail_stack_elt
1081             {
1082               unsigned char *pointer;
1083               long int integer;
1084             };
1085             
1086             typedef union fail_stack_elt fail_stack_elt_t;
1087             
1088             typedef struct
1089             {
1090               fail_stack_elt_t *stack;
1091               unsigned long int size;
1092               unsigned long int avail;		/* Offset of next open position.  */
1093 rizwank 1.1 } fail_stack_type;
1094             
1095             #else /* not INT_IS_16BIT */
1096             
1097             #if defined (MATCH_MAY_ALLOCATE)
1098             /* 4400 was enough to cause a crash on Alpha OSF/1,
1099                whose default stack limit is 2mb.  */
1100             int re_max_failures = 20000;
1101             #else
1102             int re_max_failures = 2000;
1103             #endif
1104             
1105             union fail_stack_elt
1106             {
1107               unsigned char *pointer;
1108               int integer;
1109             };
1110             
1111             typedef union fail_stack_elt fail_stack_elt_t;
1112             
1113             typedef struct
1114 rizwank 1.1 {
1115               fail_stack_elt_t *stack;
1116               unsigned size;
1117               unsigned avail;			/* Offset of next open position.  */
1118             } fail_stack_type;
1119             
1120             #endif /* INT_IS_16BIT */
1121             
1122             #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1123             #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1124             #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1125             
1126             
1127             /* Define macros to initialize and free the failure stack.
1128                Do `return -2' if the alloc fails.  */
1129             
1130             #ifdef MATCH_MAY_ALLOCATE
1131             #define INIT_FAIL_STACK()						\
1132               do {									\
1133                 fail_stack.stack = (fail_stack_elt_t *)				\
1134                   REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
1135 rizwank 1.1 									\
1136                 if (fail_stack.stack == NULL)					\
1137                   return -2;							\
1138             									\
1139                 fail_stack.size = INIT_FAILURE_ALLOC;				\
1140                 fail_stack.avail = 0;						\
1141               } while (0)
1142             
1143             #define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1144             #else
1145             #define INIT_FAIL_STACK()						\
1146               do {									\
1147                 fail_stack.avail = 0;						\
1148               } while (0)
1149             
1150             #define RESET_FAIL_STACK()
1151             #endif
1152             
1153             
1154             /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1155             
1156 rizwank 1.1    Return 1 if succeeds, and 0 if either ran out of memory
1157                allocating space for it or it was already too large.
1158             
1159                REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1160             
1161             #define DOUBLE_FAIL_STACK(fail_stack)					\
1162               ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1163                ? 0									\
1164                : ((fail_stack).stack = (fail_stack_elt_t *)				\
1165                     REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1166                       (fail_stack).size * sizeof (fail_stack_elt_t),		\
1167                       ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
1168             									\
1169                   (fail_stack).stack == NULL					\
1170                   ? 0								\
1171                   : ((fail_stack).size <<= 1, 					\
1172                      1)))
1173             
1174             
1175             /* Push pointer POINTER on FAIL_STACK.
1176                Return 1 if was able to do so and 0 if ran out of memory allocating
1177 rizwank 1.1    space to do so.  */
1178             #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1179               ((FAIL_STACK_FULL ()							\
1180                 && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1181                ? 0									\
1182                : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1183                   1))
1184             
1185             /* Push a pointer value onto the failure stack.
1186                Assumes the variable `fail_stack'.  Probably should only
1187                be called from within `PUSH_FAILURE_POINT'.  */
1188             #define PUSH_FAILURE_POINTER(item)					\
1189               fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1190             
1191             /* This pushes an integer-valued item onto the failure stack.
1192                Assumes the variable `fail_stack'.  Probably should only
1193                be called from within `PUSH_FAILURE_POINT'.  */
1194             #define PUSH_FAILURE_INT(item)					\
1195               fail_stack.stack[fail_stack.avail++].integer = (item)
1196             
1197             /* Push a fail_stack_elt_t value onto the failure stack.
1198 rizwank 1.1    Assumes the variable `fail_stack'.  Probably should only
1199                be called from within `PUSH_FAILURE_POINT'.  */
1200             #define PUSH_FAILURE_ELT(item)					\
1201               fail_stack.stack[fail_stack.avail++] =  (item)
1202             
1203             /* These three POP... operations complement the three PUSH... operations.
1204                All assume that `fail_stack' is nonempty.  */
1205             #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1206             #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1207             #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1208             
1209             /* Used to omit pushing failure point id's when we're not debugging.  */
1210             #ifdef DEBUG
1211             #define DEBUG_PUSH PUSH_FAILURE_INT
1212             #define DEBUG_POP(item_addr) (item_addr)->integer = POP_FAILURE_INT ()
1213             #else
1214             #define DEBUG_PUSH(item)
1215             #define DEBUG_POP(item_addr)
1216             #endif
1217             
1218             
1219 rizwank 1.1 /* Push the information about the state we will need
1220                if we ever fail back to it.
1221             
1222                Requires variables fail_stack, regstart, regend, reg_info, and
1223                num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
1224                declared.
1225             
1226                Does `return FAILURE_CODE' if runs out of memory.  */
1227             
1228             #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1229               do {									\
1230                 char *destination;							\
1231                 /* Must be int, so when we don't save any registers, the arithmetic	\
1232                    of 0 + -1 isn't done as unsigned.  */				\
1233                 /* Can't be int, since there is not a shred of a guarantee that int	\
1234                    is wide enough to hold a value of something to which pointer can	\
1235                    be assigned */							\
1236                 s_reg_t this_reg;							\
1237                 									\
1238                 DEBUG_STATEMENT (failure_id++);					\
1239                 DEBUG_STATEMENT (nfailure_points_pushed++);				\
1240 rizwank 1.1     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1241                 DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1242                 DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1243             									\
1244                 DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
1245                 DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1246             									\
1247                 /* Ensure we have enough space allocated for what we will push.  */	\
1248                 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1249                   {									\
1250                     if (!DOUBLE_FAIL_STACK (fail_stack))				\
1251                       return failure_code;						\
1252             									\
1253                     DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1254             		       (fail_stack).size);				\
1255                     DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1256                   }									\
1257             									\
1258                 /* Push the info, starting with the registers.  */			\
1259                 DEBUG_PRINT1 ("\n");						\
1260             									\
1261 rizwank 1.1     if (1)								\
1262                   for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1263             	   this_reg++)							\
1264             	{								\
1265             	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
1266             	  DEBUG_STATEMENT (num_regs_pushed++);				\
1267             									\
1268             	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
1269             	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1270             									\
1271             	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
1272             	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1273             									\
1274             	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
1275             	  DEBUG_PRINT2 (" match_null=%d",				\
1276             			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1277             	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1278             	  DEBUG_PRINT2 (" matched_something=%d",			\
1279             			MATCHED_SOMETHING (reg_info[this_reg]));	\
1280             	  DEBUG_PRINT2 (" ever_matched=%d",				\
1281             			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1282 rizwank 1.1 	  DEBUG_PRINT1 ("\n");						\
1283             	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1284             	}								\
1285             									\
1286                 DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
1287                 PUSH_FAILURE_INT (lowest_active_reg);				\
1288             									\
1289                 DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
1290                 PUSH_FAILURE_INT (highest_active_reg);				\
1291             									\
1292                 DEBUG_PRINT2 ("  Pushing pattern 0x%x:\n", pattern_place);		\
1293                 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1294                 PUSH_FAILURE_POINTER (pattern_place);				\
1295             									\
1296                 DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
1297                 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1298             				 size2);				\
1299                 DEBUG_PRINT1 ("'\n");						\
1300                 PUSH_FAILURE_POINTER (string_place);				\
1301             									\
1302                 DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1303 rizwank 1.1     DEBUG_PUSH (failure_id);						\
1304               } while (0)
1305             
1306             /* This is the number of items that are pushed and popped on the stack
1307                for each register.  */
1308             #define NUM_REG_ITEMS  3
1309             
1310             /* Individual items aside from the registers.  */
1311             #ifdef DEBUG
1312             #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1313             #else
1314             #define NUM_NONREG_ITEMS 4
1315             #endif
1316             
1317             /* We push at most this many items on the stack.  */
1318             /* We used to use (num_regs - 1), which is the number of registers
1319                this regexp will save; but that was changed to 5
1320                to avoid stack overflow for a regexp with lots of parens.  */
1321             #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1322             
1323             /* We actually push this many items.  */
1324 rizwank 1.1 #define NUM_FAILURE_ITEMS				\
1325               (((0							\
1326                  ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1327                 * NUM_REG_ITEMS)					\
1328                + NUM_NONREG_ITEMS)
1329             
1330             /* How many items can still be added to the stack without overflowing it.  */
1331             #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1332             
1333             
1334             /* Pops what PUSH_FAIL_STACK pushes.
1335             
1336                We restore into the parameters, all of which should be lvalues:
1337                  STR -- the saved data position.
1338                  PAT -- the saved pattern position.
1339                  LOW_REG, HIGH_REG -- the highest and lowest active registers.
1340                  REGSTART, REGEND -- arrays of string positions.
1341                  REG_INFO -- array of information about each subexpression.
1342             
1343                Also assumes the variables `fail_stack' and (if debugging), `bufp',
1344                `pend', `string1', `size1', `string2', and `size2'.  */
1345 rizwank 1.1 
1346             #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1347             {									\
1348               DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
1349               s_reg_t this_reg;							\
1350               const unsigned char *string_temp;					\
1351             									\
1352               assert (!FAIL_STACK_EMPTY ());					\
1353             									\
1354               /* Remove failure points and point to how many regs pushed.  */	\
1355               DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1356               DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1357               DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1358             									\
1359               assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1360             									\
1361               DEBUG_POP (&failure_id);						\
1362               DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1363             									\
1364               /* If the saved string location is NULL, it came from an		\
1365                  on_failure_keep_string_jump opcode, and we want to throw away the	\
1366 rizwank 1.1      saved NULL, thus retaining our current position in the string.  */	\
1367               string_temp = POP_FAILURE_POINTER ();					\
1368               if (string_temp != NULL)						\
1369                 str = (const char *) string_temp;					\
1370             									\
1371               DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
1372               DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1373               DEBUG_PRINT1 ("'\n");							\
1374             									\
1375               pat = (unsigned char *) POP_FAILURE_POINTER ();			\
1376               DEBUG_PRINT2 ("  Popping pattern 0x%x:\n", pat);			\
1377               DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1378             									\
1379               /* Restore register info.  */						\
1380               high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1381               DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
1382             									\
1383               low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1384               DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
1385             									\
1386               if (1)								\
1387 rizwank 1.1     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1388                   {									\
1389             	DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);		\
1390             									\
1391             	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1392             	DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);	\
1393             									\
1394             	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1395             	DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
1396             									\
1397             	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1398             	DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);	\
1399                   }									\
1400               else									\
1401                 {									\
1402                   for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1403             	{								\
1404             	  reg_info[this_reg].word.integer = 0;				\
1405             	  regend[this_reg] = 0;						\
1406             	  regstart[this_reg] = 0;					\
1407             	}								\
1408 rizwank 1.1       highest_active_reg = high_reg;					\
1409                 }									\
1410             									\
1411               set_regs_matched_done = 0;						\
1412               DEBUG_STATEMENT (nfailure_points_popped++);				\
1413             } /* POP_FAILURE_POINT */
1414             
1415             
1416             
1417             /* Structure for per-register (a.k.a. per-group) information.
1418                Other register information, such as the
1419                starting and ending positions (which are addresses), and the list of
1420                inner groups (which is a bits list) are maintained in separate
1421                variables.
1422             
1423                We are making a (strictly speaking) nonportable assumption here: that
1424                the compiler will pack our bit fields into something that fits into
1425                the type of `word', i.e., is something that fits into one item on the
1426                failure stack.  */
1427             
1428             
1429 rizwank 1.1 /* Declarations and macros for re_match_2.  */
1430             
1431             typedef union
1432             {
1433               fail_stack_elt_t word;
1434               struct
1435               {
1436                   /* This field is one if this group can match the empty string,
1437                      zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1438             #define MATCH_NULL_UNSET_VALUE 3
1439                 unsigned match_null_string_p : 2;
1440                 unsigned is_active : 1;
1441                 unsigned matched_something : 1;
1442                 unsigned ever_matched_something : 1;
1443               } bits;
1444             } register_info_type;
1445             
1446             #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1447             #define IS_ACTIVE(R)  ((R).bits.is_active)
1448             #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1449             #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1450 rizwank 1.1 
1451             
1452             /* Call this when have matched a real character; it sets `matched' flags
1453                for the subexpressions which we are currently inside.  Also records
1454                that those subexprs have matched.  */
1455             #define SET_REGS_MATCHED()						\
1456               do									\
1457                 {									\
1458                   if (!set_regs_matched_done)					\
1459             	{								\
1460             	  active_reg_t r;						\
1461             	  set_regs_matched_done = 1;					\
1462             	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1463             	    {								\
1464             	      MATCHED_SOMETHING (reg_info[r])				\
1465             		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1466             		= 1;							\
1467             	    }								\
1468             	}								\
1469                 }									\
1470               while (0)
1471 rizwank 1.1 
1472             /* Registers are set to a sentinel when they haven't yet matched.  */
1473             static char reg_unset_dummy;
1474             #define REG_UNSET_VALUE (&reg_unset_dummy)
1475             #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1476             
1477             /* Subroutine declarations and macros for regex_compile.  */
1478             
1479             static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1480             					      reg_syntax_t syntax,
1481             					      struct re_pattern_buffer *bufp));
1482             static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1483             static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1484             				 int arg1, int arg2));
1485             static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1486             				  int arg, unsigned char *end));
1487             static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1488             				  int arg1, int arg2, unsigned char *end));
1489             static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1490             					   reg_syntax_t syntax));
1491             static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1492 rizwank 1.1 					   reg_syntax_t syntax));
1493             static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1494             					      const char *pend,
1495             					      char *translate,
1496             					      reg_syntax_t syntax,
1497             					      unsigned char *b));
1498             
1499             /* Fetch the next character in the uncompiled pattern---translating it
1500                if necessary.  Also cast from a signed character in the constant
1501                string passed to us by the user to an unsigned char that we can use
1502                as an array index (in, e.g., `translate').  */
1503             #ifndef PATFETCH
1504             #define PATFETCH(c)							\
1505               do {if (p == pend) return REG_EEND;					\
1506                 c = (unsigned char) *p++;						\
1507                 if (translate) c = (unsigned char) translate[c];			\
1508               } while (0)
1509             #endif
1510             
1511             /* Fetch the next character in the uncompiled pattern, with no
1512                translation.  */
1513 rizwank 1.1 #define PATFETCH_RAW(c)							\
1514               do {if (p == pend) return REG_EEND;					\
1515                 c = (unsigned char) *p++; 						\
1516               } while (0)
1517             
1518             /* Go backwards one character in the pattern.  */
1519             #define PATUNFETCH p--
1520             
1521             
1522             /* If `translate' is non-null, return translate[D], else just D.  We
1523                cast the subscript to translate because some data is declared as
1524                `char *', to avoid warnings when a string constant is passed.  But
1525                when we use a character as a subscript we must make it unsigned.  */
1526             #ifndef TRANSLATE
1527             #define TRANSLATE(d) \
1528               (translate ? (char) translate[(unsigned char) (d)] : (d))
1529             #endif
1530             
1531             
1532             /* Macros for outputting the compiled pattern into `buffer'.  */
1533             
1534 rizwank 1.1 /* If the buffer isn't allocated when it comes in, use this.  */
1535             #define INIT_BUF_SIZE  32
1536             
1537             /* Make sure we have at least N more bytes of space in buffer.  */
1538             #define GET_BUFFER_SPACE(n)						\
1539                 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1540                   EXTEND_BUFFER ()
1541             
1542             /* Make sure we have one more byte of buffer space and then add C to it.  */
1543             #define BUF_PUSH(c)							\
1544               do {									\
1545                 GET_BUFFER_SPACE (1);						\
1546                 *b++ = (unsigned char) (c);						\
1547               } while (0)
1548             
1549             
1550             /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1551             #define BUF_PUSH_2(c1, c2)						\
1552               do {									\
1553                 GET_BUFFER_SPACE (2);						\
1554                 *b++ = (unsigned char) (c1);					\
1555 rizwank 1.1     *b++ = (unsigned char) (c2);					\
1556               } while (0)
1557             
1558             
1559             /* As with BUF_PUSH_2, except for three bytes.  */
1560             #define BUF_PUSH_3(c1, c2, c3)						\
1561               do {									\
1562                 GET_BUFFER_SPACE (3);						\
1563                 *b++ = (unsigned char) (c1);					\
1564                 *b++ = (unsigned char) (c2);					\
1565                 *b++ = (unsigned char) (c3);					\
1566               } while (0)
1567             
1568             
1569             /* Store a jump with opcode OP at LOC to location TO.  We store a
1570                relative address offset by the three bytes the jump itself occupies.  */
1571             #define STORE_JUMP(op, loc, to) \
1572               store_op1 (op, loc, (int) ((to) - (loc) - 3))
1573             
1574             /* Likewise, for a two-argument jump.  */
1575             #define STORE_JUMP2(op, loc, to, arg) \
1576 rizwank 1.1   store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1577             
1578             /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1579             #define INSERT_JUMP(op, loc, to) \
1580               insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1581             
1582             /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1583             #define INSERT_JUMP2(op, loc, to, arg) \
1584               insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1585             
1586             
1587             /* This is not an arbitrary limit: the arguments which represent offsets
1588                into the pattern are two bytes long.  So if 2^16 bytes turns out to
1589                be too small, many things would have to change.  */
1590             /* Any other compiler which, like MSC, has allocation limit below 2^16
1591                bytes will have to use approach similar to what was done below for
1592                MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1593                reallocating to 0 bytes.  Such thing is not going to work too well.
1594                You have been warned!!  */
1595             #if defined(_MSC_VER) && !defined(WIN32)
1596             /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1597 rizwank 1.1    The REALLOC define eliminates a flurry of conversion warnings,
1598                but is not required. */
1599             #define MAX_BUF_SIZE  65500L
1600             #define REALLOC(p,s) realloc ((p), (size_t) (s))
1601             #else
1602             #define MAX_BUF_SIZE (1L << 16)
1603             #define REALLOC(p,s) realloc ((p), (s))
1604             #endif
1605             
1606             /* Extend the buffer by twice its current size via realloc and
1607                reset the pointers that pointed into the old block to point to the
1608                correct places in the new one.  If extending the buffer results in it
1609                being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
1610             #define EXTEND_BUFFER()							\
1611               do { 									\
1612                 unsigned char *old_buffer = bufp->buffer;				\
1613                 if (bufp->allocated == MAX_BUF_SIZE) 				\
1614                   return REG_ESIZE;							\
1615                 bufp->allocated <<= 1;						\
1616                 if (bufp->allocated > MAX_BUF_SIZE)					\
1617                   bufp->allocated = MAX_BUF_SIZE; 					\
1618 rizwank 1.1     bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1619                 if (bufp->buffer == NULL)						\
1620                   return REG_ESPACE;						\
1621                 /* If the buffer moved, move all the pointers into it.  */		\
1622                 if (old_buffer != bufp->buffer)					\
1623                   {									\
1624                     b = (b - old_buffer) + bufp->buffer;				\
1625                     begalt = (begalt - old_buffer) + bufp->buffer;			\
1626                     if (fixup_alt_jump)						\
1627                       fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1628                     if (laststart)							\
1629                       laststart = (laststart - old_buffer) + bufp->buffer;		\
1630                     if (pending_exact)						\
1631                       pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
1632                   }									\
1633               } while (0)
1634             
1635             
1636             /* Since we have one byte reserved for the register number argument to
1637                {start,stop}_memory, the maximum number of groups we can report
1638                things about is what fits in that byte.  */
1639 rizwank 1.1 #define MAX_REGNUM 255
1640             
1641             /* But patterns can have more than `MAX_REGNUM' registers.  We just
1642                ignore the excess.  */
1643             typedef unsigned regnum_t;
1644             
1645             
1646             /* Macros for the compile stack.  */
1647             
1648             /* Since offsets can go either forwards or backwards, this type needs to
1649                be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
1650             /* int may be not enough when sizeof(int) == 2.  */
1651             typedef long pattern_offset_t;
1652             
1653             typedef struct
1654             {
1655               pattern_offset_t begalt_offset;
1656               pattern_offset_t fixup_alt_jump;
1657               pattern_offset_t inner_group_offset;
1658               pattern_offset_t laststart_offset;
1659               regnum_t regnum;
1660 rizwank 1.1 } compile_stack_elt_t;
1661             
1662             
1663             typedef struct
1664             {
1665               compile_stack_elt_t *stack;
1666               unsigned size;
1667               unsigned avail;			/* Offset of next open position.  */
1668             } compile_stack_type;
1669             
1670             
1671             #define INIT_COMPILE_STACK_SIZE 32
1672             
1673             #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1674             #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1675             
1676             /* The next available element.  */
1677             #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1678             
1679             
1680             /* Set the bit for character C in a list.  */
1681 rizwank 1.1 #define SET_LIST_BIT(c)                               \
1682               (b[((unsigned char) (c)) / BYTEWIDTH]               \
1683                |= 1 << (((unsigned char) c) % BYTEWIDTH))
1684             
1685             
1686             /* Get the next unsigned number in the uncompiled pattern.  */
1687             #define GET_UNSIGNED_NUMBER(num) 					\
1688               { if (p != pend)							\
1689                  {									\
1690                    PATFETCH (c); 							\
1691                    while (ISDIGIT (c)) 						\
1692                      { 								\
1693                        if (num < 0)							\
1694                           num = 0;							\
1695                        num = num * 10 + c - '0'; 					\
1696                        if (p == pend) 						\
1697                           break; 							\
1698                        PATFETCH (c);						\
1699                      } 								\
1700                    } 								\
1701                 }
1702 rizwank 1.1 
1703             #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1704             /* The GNU C library provides support for user-defined character classes
1705                and the functions from ISO C amendement 1.  */
1706             # ifdef CHARCLASS_NAME_MAX
1707             #  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1708             # else
1709             /* This shouldn't happen but some implementation might still have this
1710                problem.  Use a reasonable default value.  */
1711             #  define CHAR_CLASS_MAX_LENGTH 256
1712             # endif
1713             
1714             # define IS_CHAR_CLASS(string) wctype (string)
1715             #else
1716             # define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1717             
1718             # define IS_CHAR_CLASS(string)						\
1719                (STREQ (string, "alpha") || STREQ (string, "upper")			\
1720                 || STREQ (string, "lower") || STREQ (string, "digit")		\
1721                 || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1722                 || STREQ (string, "space") || STREQ (string, "print")		\
1723 rizwank 1.1     || STREQ (string, "punct") || STREQ (string, "graph")		\
1724                 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1725             #endif
1726             
1727             #ifndef MATCH_MAY_ALLOCATE
1728             
1729             /* If we cannot allocate large objects within re_match_2_internal,
1730                we make the fail stack and register vectors global.
1731                The fail stack, we grow to the maximum size when a regexp
1732                is compiled.
1733                The register vectors, we adjust in size each time we
1734                compile a regexp, according to the number of registers it needs.  */
1735             
1736             static fail_stack_type fail_stack;
1737             
1738             /* Size with which the following vectors are currently allocated.
1739                That is so we can make them bigger as needed,
1740                but never make them smaller.  */
1741             static int regs_allocated_size;
1742             
1743             static const char **     regstart, **     regend;
1744 rizwank 1.1 static const char ** old_regstart, ** old_regend;
1745             static const char **best_regstart, **best_regend;
1746             static register_info_type *reg_info;
1747             static const char **reg_dummy;
1748             static register_info_type *reg_info_dummy;
1749             
1750             /* Make the register vectors big enough for NUM_REGS registers,
1751                but don't make them smaller.  */
1752             
1753             static
1754             regex_grow_registers (num_regs)
1755                  int num_regs;
1756             {
1757               if (num_regs > regs_allocated_size)
1758                 {
1759                   RETALLOC_IF (regstart,	 num_regs, const char *);
1760                   RETALLOC_IF (regend,	 num_regs, const char *);
1761                   RETALLOC_IF (old_regstart, num_regs, const char *);
1762                   RETALLOC_IF (old_regend,	 num_regs, const char *);
1763                   RETALLOC_IF (best_regstart, num_regs, const char *);
1764                   RETALLOC_IF (best_regend,	 num_regs, const char *);
1765 rizwank 1.1       RETALLOC_IF (reg_info,	 num_regs, register_info_type);
1766                   RETALLOC_IF (reg_dummy,	 num_regs, const char *);
1767                   RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1768             
1769                   regs_allocated_size = num_regs;
1770                 }
1771             }
1772             
1773             #endif /* not MATCH_MAY_ALLOCATE */
1774             
1775             static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1776             						 compile_stack,
1777             						 regnum_t regnum));
1778             
1779             /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1780                Returns one of error codes defined in `regex.h', or zero for success.
1781             
1782                Assumes the `allocated' (and perhaps `buffer') and `translate'
1783                fields are set in BUFP on entry.
1784             
1785                If it succeeds, results are put in BUFP (if it returns an error, the
1786 rizwank 1.1    contents of BUFP are undefined):
1787                  `buffer' is the compiled pattern;
1788                  `syntax' is set to SYNTAX;
1789                  `used' is set to the length of the compiled pattern;
1790                  `fastmap_accurate' is zero;
1791                  `re_nsub' is the number of subexpressions in PATTERN;
1792                  `not_bol' and `not_eol' are zero;
1793             
1794                The `fastmap' and `newline_anchor' fields are neither
1795                examined nor set.  */
1796             
1797             /* Return, freeing storage we allocated.  */
1798             #define FREE_STACK_RETURN(value)		\
1799               return (free (compile_stack.stack), value)
1800             
1801             static reg_errcode_t
1802             regex_compile (pattern, size, syntax, bufp)
1803                  const char *pattern;
1804                  size_t size;
1805                  reg_syntax_t syntax;
1806                  struct re_pattern_buffer *bufp;
1807 rizwank 1.1 {
1808               /* We fetch characters from PATTERN here.  Even though PATTERN is
1809                  `char *' (i.e., signed), we declare these variables as unsigned, so
1810                  they can be reliably used as array indices.  */
1811               register unsigned char c, c1;
1812             
1813               /* A random temporary spot in PATTERN.  */
1814               const char *p1;
1815             
1816               /* Points to the end of the buffer, where we should append.  */
1817               register unsigned char *b;
1818             
1819               /* Keeps track of unclosed groups.  */
1820               compile_stack_type compile_stack;
1821             
1822               /* Points to the current (ending) position in the pattern.  */
1823               const char *p = pattern;
1824               const char *pend = pattern + size;
1825             
1826               /* How to translate the characters in the pattern.  */
1827               RE_TRANSLATE_TYPE translate = bufp->translate;
1828 rizwank 1.1 
1829               /* Address of the count-byte of the most recently inserted `exactn'
1830                  command.  This makes it possible to tell if a new exact-match
1831                  character can be added to that command or if the character requires
1832                  a new `exactn' command.  */
1833               unsigned char *pending_exact = 0;
1834             
1835               /* Address of start of the most recently finished expression.
1836                  This tells, e.g., postfix * where to find the start of its
1837                  operand.  Reset at the beginning of groups and alternatives.  */
1838               unsigned char *laststart = 0;
1839             
1840               /* Address of beginning of regexp, or inside of last group.  */
1841               unsigned char *begalt;
1842             
1843               /* Place in the uncompiled pattern (i.e., the {) to
1844                  which to go back if the interval is invalid.  */
1845               const char *beg_interval;
1846             
1847               /* Address of the place where a forward jump should go to the end of
1848                  the containing expression.  Each alternative of an `or' -- except the
1849 rizwank 1.1      last -- ends with a forward jump of this sort.  */
1850               unsigned char *fixup_alt_jump = 0;
1851             
1852               /* Counts open-groups as they are encountered.  Remembered for the
1853                  matching close-group on the compile stack, so the same register
1854                  number is put in the stop_memory as the start_memory.  */
1855               regnum_t regnum = 0;
1856             
1857             #ifdef DEBUG
1858               DEBUG_PRINT1 ("\nCompiling pattern: ");
1859               if (debug)
1860                 {
1861                   unsigned debug_count;
1862             
1863                   for (debug_count = 0; debug_count < size; debug_count++)
1864                     putchar (pattern[debug_count]);
1865                   putchar ('\n');
1866                 }
1867             #endif /* DEBUG */
1868             
1869               /* Initialize the compile stack.  */
1870 rizwank 1.1   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1871               if (compile_stack.stack == NULL)
1872                 return REG_ESPACE;
1873             
1874               compile_stack.size = INIT_COMPILE_STACK_SIZE;
1875               compile_stack.avail = 0;
1876             
1877               /* Initialize the pattern buffer.  */
1878               bufp->syntax = syntax;
1879               bufp->fastmap_accurate = 0;
1880               bufp->not_bol = bufp->not_eol = 0;
1881             
1882               /* Set `used' to zero, so that if we return an error, the pattern
1883                  printer (for debugging) will think there's no pattern.  We reset it
1884                  at the end.  */
1885               bufp->used = 0;
1886             
1887               /* Always count groups, whether or not bufp->no_sub is set.  */
1888               bufp->re_nsub = 0;
1889             
1890             #if !defined (emacs) && !defined (SYNTAX_TABLE)
1891 rizwank 1.1   /* Initialize the syntax table.  */
1892                init_syntax_once ();
1893             #endif
1894             
1895               if (bufp->allocated == 0)
1896                 {
1897                   if (bufp->buffer)
1898             	{ /* If zero allocated, but buffer is non-null, try to realloc
1899                          enough space.  This loses if buffer's address is bogus, but
1900                          that is the user's responsibility.  */
1901                       RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1902                     }
1903                   else
1904                     { /* Caller did not allocate a buffer.  Do it for them.  */
1905                       bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1906                     }
1907                   if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1908             
1909                   bufp->allocated = INIT_BUF_SIZE;
1910                 }
1911             
1912 rizwank 1.1   begalt = b = bufp->buffer;
1913             
1914               /* Loop through the uncompiled pattern until we're at the end.  */
1915               while (p != pend)
1916                 {
1917                   PATFETCH (c);
1918             
1919                   switch (c)
1920                     {
1921                     case '^':
1922                       {
1923                         if (   /* If at start of pattern, it's an operator.  */
1924                                p == pattern + 1
1925                                /* If context independent, it's an operator.  */
1926                             || syntax & RE_CONTEXT_INDEP_ANCHORS
1927                                /* Otherwise, depends on what's come before.  */
1928                             || at_begline_loc_p (pattern, p, syntax))
1929                           BUF_PUSH (begline);
1930                         else
1931                           goto normal_char;
1932                       }
1933 rizwank 1.1           break;
1934             
1935             
1936                     case '$':
1937                       {
1938                         if (   /* If at end of pattern, it's an operator.  */
1939                                p == pend
1940                                /* If context independent, it's an operator.  */
1941                             || syntax & RE_CONTEXT_INDEP_ANCHORS
1942                                /* Otherwise, depends on what's next.  */
1943                             || at_endline_loc_p (p, pend, syntax))
1944                            BUF_PUSH (endline);
1945                          else
1946                            goto normal_char;
1947                        }
1948                        break;
1949             
1950             
1951             	case '+':
1952                     case '?':
1953                       if ((syntax & RE_BK_PLUS_QM)
1954 rizwank 1.1               || (syntax & RE_LIMITED_OPS))
1955                         goto normal_char;
1956                     handle_plus:
1957                     case '*':
1958                       /* If there is no previous pattern... */
1959                       if (!laststart)
1960                         {
1961                           if (syntax & RE_CONTEXT_INVALID_OPS)
1962                             FREE_STACK_RETURN (REG_BADRPT);
1963                           else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1964                             goto normal_char;
1965                         }
1966             
1967                       {
1968                         /* Are we optimizing this jump?  */
1969                         boolean keep_string_p = false;
1970             
1971                         /* 1 means zero (many) matches is allowed.  */
1972                         char zero_times_ok = 0, many_times_ok = 0;
1973             
1974                         /* If there is a sequence of repetition chars, collapse it
1975 rizwank 1.1                down to just one (the right one).  We can't combine
1976                            interval operators with these because of, e.g., `a{2}*',
1977                            which should only match an even number of `a's.  */
1978             
1979                         for (;;)
1980                           {
1981                             zero_times_ok |= c != '+';
1982                             many_times_ok |= c != '?';
1983             
1984                             if (p == pend)
1985                               break;
1986             
1987                             PATFETCH (c);
1988             
1989                             if (c == '*'
1990                                 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1991                               ;
1992             
1993                             else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
1994                               {
1995                                 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1996 rizwank 1.1 
1997                                 PATFETCH (c1);
1998                                 if (!(c1 == '+' || c1 == '?'))
1999                                   {
2000                                     PATUNFETCH;
2001                                     PATUNFETCH;
2002                                     break;
2003                                   }
2004             
2005                                 c = c1;
2006                               }
2007                             else
2008                               {
2009                                 PATUNFETCH;
2010                                 break;
2011                               }
2012             
2013                             /* If we get here, we found another repeat character.  */
2014                            }
2015             
2016                         /* Star, etc. applied to an empty pattern is equivalent
2017 rizwank 1.1                to an empty pattern.  */
2018                         if (!laststart)
2019                           break;
2020             
2021                         /* Now we know whether or not zero matches is allowed
2022                            and also whether or not two or more matches is allowed.  */
2023                         if (many_times_ok)
2024                           { /* More than one repetition is allowed, so put in at the
2025                                end a backward relative jump from `b' to before the next
2026                                jump we're going to put in below (which jumps from
2027                                laststart to after this jump).
2028             
2029                                But if we are at the `*' in the exact sequence `.*\n',
2030                                insert an unconditional jump backwards to the .,
2031                                instead of the beginning of the loop.  This way we only
2032                                push a failure point once, instead of every time
2033                                through the loop.  */
2034                             assert (p - 1 > pattern);
2035             
2036                             /* Allocate the space for the jump.  */
2037                             GET_BUFFER_SPACE (3);
2038 rizwank 1.1 
2039                             /* We know we are not at the first character of the pattern,
2040                                because laststart was nonzero.  And we've already
2041                                incremented `p', by the way, to be the character after
2042                                the `*'.  Do we have to do something analogous here
2043                                for null bytes, because of RE_DOT_NOT_NULL?  */
2044                             if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2045             		    && zero_times_ok
2046                                 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2047                                 && !(syntax & RE_DOT_NEWLINE))
2048                               { /* We have .*\n.  */
2049                                 STORE_JUMP (jump, b, laststart);
2050                                 keep_string_p = true;
2051                               }
2052                             else
2053                               /* Anything else.  */
2054                               STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2055             
2056                             /* We've added more stuff to the buffer.  */
2057                             b += 3;
2058                           }
2059 rizwank 1.1 
2060                         /* On failure, jump from laststart to b + 3, which will be the
2061                            end of the buffer after this jump is inserted.  */
2062                         GET_BUFFER_SPACE (3);
2063                         INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2064                                                    : on_failure_jump,
2065                                      laststart, b + 3);
2066                         pending_exact = 0;
2067                         b += 3;
2068             
2069                         if (!zero_times_ok)
2070                           {
2071                             /* At least one repetition is required, so insert a
2072                                `dummy_failure_jump' before the initial
2073                                `on_failure_jump' instruction of the loop. This
2074                                effects a skip over that instruction the first time
2075                                we hit that loop.  */
2076                             GET_BUFFER_SPACE (3);
2077                             INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2078                             b += 3;
2079                           }
2080 rizwank 1.1             }
2081             	  break;
2082             
2083             
2084             	case '.':
2085                       laststart = b;
2086                       BUF_PUSH (anychar);
2087                       break;
2088             
2089             
2090                     case '[':
2091                       {
2092                         boolean had_char_class = false;
2093             
2094                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2095             
2096                         /* Ensure that we have enough space to push a charset: the
2097                            opcode, the length count, and the bitset; 34 bytes in all.  */
2098             	    GET_BUFFER_SPACE (34);
2099             
2100                         laststart = b;
2101 rizwank 1.1 
2102                         /* We test `*p == '^' twice, instead of using an if
2103                            statement, so we only need one BUF_PUSH.  */
2104                         BUF_PUSH (*p == '^' ? charset_not : charset);
2105                         if (*p == '^')
2106                           p++;
2107             
2108                         /* Remember the first position in the bracket expression.  */
2109                         p1 = p;
2110             
2111                         /* Push the number of bytes in the bitmap.  */
2112                         BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2113             
2114                         /* Clear the whole map.  */
2115                         bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2116             
2117                         /* charset_not matches newline according to a syntax bit.  */
2118                         if ((re_opcode_t) b[-2] == charset_not
2119                             && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2120                           SET_LIST_BIT ('\n');
2121             
2122 rizwank 1.1             /* Read in characters and ranges, setting map bits.  */
2123                         for (;;)
2124                           {
2125                             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2126             
2127                             PATFETCH (c);
2128             
2129                             /* \ might escape characters inside [...] and [^...].  */
2130                             if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2131                               {
2132                                 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2133             
2134                                 PATFETCH (c1);
2135                                 SET_LIST_BIT (c1);
2136                                 continue;
2137                               }
2138             
2139                             /* Could be the end of the bracket expression.  If it's
2140                                not (i.e., when the bracket expression is `[]' so
2141                                far), the ']' character bit gets set way below.  */
2142                             if (c == ']' && p != p1 + 1)
2143 rizwank 1.1                   break;
2144             
2145                             /* Look ahead to see if it's a range when the last thing
2146                                was a character class.  */
2147                             if (had_char_class && c == '-' && *p != ']')
2148                               FREE_STACK_RETURN (REG_ERANGE);
2149             
2150                             /* Look ahead to see if it's a range when the last thing
2151                                was a character: if this is a hyphen not at the
2152                                beginning or the end of a list, then it's the range
2153                                operator.  */
2154                             if (c == '-'
2155                                 && !(p - 2 >= pattern && p[-2] == '[')
2156                                 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2157                                 && *p != ']')
2158                               {
2159                                 reg_errcode_t ret
2160                                   = compile_range (&p, pend, translate, syntax, b);
2161                                 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2162                               }
2163             
2164 rizwank 1.1                 else if (p[0] == '-' && p[1] != ']')
2165                               { /* This handles ranges made up of characters only.  */
2166                                 reg_errcode_t ret;
2167             
2168             		    /* Move past the `-'.  */
2169                                 PATFETCH (c1);
2170             
2171                                 ret = compile_range (&p, pend, translate, syntax, b);
2172                                 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2173                               }
2174             
2175                             /* See if we're at the beginning of a possible character
2176                                class.  */
2177             
2178                             else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2179                               { /* Leave room for the null.  */
2180                                 char str[CHAR_CLASS_MAX_LENGTH + 1];
2181             
2182                                 PATFETCH (c);
2183                                 c1 = 0;
2184             
2185 rizwank 1.1                     /* If pattern is `[[:'.  */
2186                                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2187             
2188                                 for (;;)
2189                                   {
2190                                     PATFETCH (c);
2191                                     if (c == ':' || c == ']' || p == pend
2192                                         || c1 == CHAR_CLASS_MAX_LENGTH)
2193                                       break;
2194                                     str[c1++] = c;
2195                                   }
2196                                 str[c1] = '\0';
2197             
2198                                 /* If isn't a word bracketed by `[:' and:`]':
2199                                    undo the ending character, the letters, and leave
2200                                    the leading `:' and `[' (but set bits for them).  */
2201                                 if (c == ':' && *p == ']')
2202                                   {
2203             #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2204                                     boolean is_lower = STREQ (str, "lower");
2205                                     boolean is_upper = STREQ (str, "upper");
2206 rizwank 1.1 			wctype_t wt;
2207                                     int ch;
2208             
2209             			wt = wctype (str);
2210             			if (wt == 0)
2211             			  FREE_STACK_RETURN (REG_ECTYPE);
2212             
2213                                     /* Throw away the ] at the end of the character
2214                                        class.  */
2215                                     PATFETCH (c);
2216             
2217                                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2218             
2219                                     for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2220             			  {
2221             			    if (iswctype (btowc (ch), wt))
2222             			      SET_LIST_BIT (ch);
2223             
2224             			    if (translate && (is_upper || is_lower)
2225             				&& (ISUPPER (ch) || ISLOWER (ch)))
2226             			      SET_LIST_BIT (ch);
2227 rizwank 1.1 			  }
2228             
2229                                     had_char_class = true;
2230             #else
2231                                     int ch;
2232                                     boolean is_alnum = STREQ (str, "alnum");
2233                                     boolean is_alpha = STREQ (str, "alpha");
2234                                     boolean is_blank = STREQ (str, "blank");
2235                                     boolean is_cntrl = STREQ (str, "cntrl");
2236                                     boolean is_digit = STREQ (str, "digit");
2237                                     boolean is_graph = STREQ (str, "graph");
2238                                     boolean is_lower = STREQ (str, "lower");
2239                                     boolean is_print = STREQ (str, "print");
2240                                     boolean is_punct = STREQ (str, "punct");
2241                                     boolean is_space = STREQ (str, "space");
2242                                     boolean is_upper = STREQ (str, "upper");
2243                                     boolean is_xdigit = STREQ (str, "xdigit");
2244             
2245                                     if (!IS_CHAR_CLASS (str))
2246             			  FREE_STACK_RETURN (REG_ECTYPE);
2247             
2248 rizwank 1.1                         /* Throw away the ] at the end of the character
2249                                        class.  */
2250                                     PATFETCH (c);
2251             
2252                                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2253             
2254                                     for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2255                                       {
2256             			    /* This was split into 3 if's to
2257             			       avoid an arbitrary limit in some compiler.  */
2258                                         if (   (is_alnum  && ISALNUM (ch))
2259                                             || (is_alpha  && ISALPHA (ch))
2260                                             || (is_blank  && ISBLANK (ch))
2261                                             || (is_cntrl  && ISCNTRL (ch)))
2262             			      SET_LIST_BIT (ch);
2263             			    if (   (is_digit  && ISDIGIT (ch))
2264                                             || (is_graph  && ISGRAPH (ch))
2265                                             || (is_lower  && ISLOWER (ch))
2266                                             || (is_print  && ISPRINT (ch)))
2267             			      SET_LIST_BIT (ch);
2268             			    if (   (is_punct  && ISPUNCT (ch))
2269 rizwank 1.1                                 || (is_space  && ISSPACE (ch))
2270                                             || (is_upper  && ISUPPER (ch))
2271                                             || (is_xdigit && ISXDIGIT (ch)))
2272             			      SET_LIST_BIT (ch);
2273             			    if (   translate && (is_upper || is_lower)
2274             				&& (ISUPPER (ch) || ISLOWER (ch)))
2275             			      SET_LIST_BIT (ch);
2276                                       }
2277                                     had_char_class = true;
2278             #endif	/* libc || wctype.h */
2279                                   }
2280                                 else
2281                                   {
2282                                     c1++;
2283                                     while (c1--)
2284                                       PATUNFETCH;
2285                                     SET_LIST_BIT ('[');
2286                                     SET_LIST_BIT (':');
2287                                     had_char_class = false;
2288                                   }
2289                               }
2290 rizwank 1.1                 else
2291                               {
2292                                 had_char_class = false;
2293                                 SET_LIST_BIT (c);
2294                               }
2295                           }
2296             
2297                         /* Discard any (non)matching list bytes that are all 0 at the
2298                            end of the map.  Decrease the map-length byte too.  */
2299                         while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2300                           b[-1]--;
2301                         b += b[-1];
2302                       }
2303                       break;
2304             
2305             
2306             	case '(':
2307                       if (syntax & RE_NO_BK_PARENS)
2308                         goto handle_open;
2309                       else
2310                         goto normal_char;
2311 rizwank 1.1 
2312             
2313                     case ')':
2314                       if (syntax & RE_NO_BK_PARENS)
2315                         goto handle_close;
2316                       else
2317                         goto normal_char;
2318             
2319             
2320                     case '\n':
2321                       if (syntax & RE_NEWLINE_ALT)
2322                         goto handle_alt;
2323                       else
2324                         goto normal_char;
2325             
2326             
2327             	case '|':
2328                       if (syntax & RE_NO_BK_VBAR)
2329                         goto handle_alt;
2330                       else
2331                         goto normal_char;
2332 rizwank 1.1 
2333             
2334                     case '{':
2335                        if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2336                          goto handle_interval;
2337                        else
2338                          goto normal_char;
2339             
2340             
2341                     case '\\':
2342                       if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2343             
2344                       /* Do not translate the character after the \, so that we can
2345                          distinguish, e.g., \B from \b, even if we normally would
2346                          translate, e.g., B to b.  */
2347                       PATFETCH_RAW (c);
2348             
2349                       switch (c)
2350                         {
2351                         case '(':
2352                           if (syntax & RE_NO_BK_PARENS)
2353 rizwank 1.1                 goto normal_backslash;
2354             
2355                         handle_open:
2356                           bufp->re_nsub++;
2357                           regnum++;
2358             
2359                           if (COMPILE_STACK_FULL)
2360                             {
2361                               RETALLOC (compile_stack.stack, compile_stack.size << 1,
2362                                         compile_stack_elt_t);
2363                               if (compile_stack.stack == NULL) return REG_ESPACE;
2364             
2365                               compile_stack.size <<= 1;
2366                             }
2367             
2368                           /* These are the values to restore when we hit end of this
2369                              group.  They are all relative offsets, so that if the
2370                              whole pattern moves because of realloc, they will still
2371                              be valid.  */
2372                           COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2373                           COMPILE_STACK_TOP.fixup_alt_jump
2374 rizwank 1.1                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2375                           COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2376                           COMPILE_STACK_TOP.regnum = regnum;
2377             
2378                           /* We will eventually replace the 0 with the number of
2379                              groups inner to this one.  But do not push a
2380                              start_memory for groups beyond the last one we can
2381                              represent in the compiled pattern.  */
2382                           if (regnum <= MAX_REGNUM)
2383                             {
2384                               COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2385                               BUF_PUSH_3 (start_memory, regnum, 0);
2386                             }
2387             
2388                           compile_stack.avail++;
2389             
2390                           fixup_alt_jump = 0;
2391                           laststart = 0;
2392                           begalt = b;
2393             	      /* If we've reached MAX_REGNUM groups, then this open
2394             		 won't actually generate any code, so we'll have to
2395 rizwank 1.1 		 clear pending_exact explicitly.  */
2396             	      pending_exact = 0;
2397                           break;
2398             
2399             
2400                         case ')':
2401                           if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2402             
2403                           if (COMPILE_STACK_EMPTY)
2404                             if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2405                               goto normal_backslash;
2406                             else
2407                               FREE_STACK_RETURN (REG_ERPAREN);
2408             
2409                         handle_close:
2410                           if (fixup_alt_jump)
2411                             { /* Push a dummy failure point at the end of the
2412                                  alternative for a possible future
2413                                  `pop_failure_jump' to pop.  See comments at
2414                                  `push_dummy_failure' in `re_match_2'.  */
2415                               BUF_PUSH (push_dummy_failure);
2416 rizwank 1.1 
2417                               /* We allocated space for this jump when we assigned
2418                                  to `fixup_alt_jump', in the `handle_alt' case below.  */
2419                               STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2420                             }
2421             
2422                           /* See similar code for backslashed left paren above.  */
2423                           if (COMPILE_STACK_EMPTY)
2424                             if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2425                               goto normal_char;
2426                             else
2427                               FREE_STACK_RETURN (REG_ERPAREN);
2428             
2429                           /* Since we just checked for an empty stack above, this
2430                              ``can't happen''.  */
2431                           assert (compile_stack.avail != 0);
2432                           {
2433                             /* We don't just want to restore into `regnum', because
2434                                later groups should continue to be numbered higher,
2435                                as in `(ab)c(de)' -- the second group is #2.  */
2436                             regnum_t this_group_regnum;
2437 rizwank 1.1 
2438                             compile_stack.avail--;
2439                             begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2440                             fixup_alt_jump
2441                               = COMPILE_STACK_TOP.fixup_alt_jump
2442                                 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2443                                 : 0;
2444                             laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2445                             this_group_regnum = COMPILE_STACK_TOP.regnum;
2446             		/* If we've reached MAX_REGNUM groups, then this open
2447             		   won't actually generate any code, so we'll have to
2448             		   clear pending_exact explicitly.  */
2449             		pending_exact = 0;
2450             
2451                             /* We're at the end of the group, so now we know how many
2452                                groups were inside this one.  */
2453                             if (this_group_regnum <= MAX_REGNUM)
2454                               {
2455                                 unsigned char *inner_group_loc
2456                                   = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2457             
2458 rizwank 1.1                     *inner_group_loc = regnum - this_group_regnum;
2459                                 BUF_PUSH_3 (stop_memory, this_group_regnum,
2460                                             regnum - this_group_regnum);
2461                               }
2462                           }
2463                           break;
2464             
2465             
2466                         case '|':					/* `\|'.  */
2467                           if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2468                             goto normal_backslash;
2469                         handle_alt:
2470                           if (syntax & RE_LIMITED_OPS)
2471                             goto normal_char;
2472             
2473                           /* Insert before the previous alternative a jump which
2474                              jumps to this alternative if the former fails.  */
2475                           GET_BUFFER_SPACE (3);
2476                           INSERT_JUMP (on_failure_jump, begalt, b + 6);
2477                           pending_exact = 0;
2478                           b += 3;
2479 rizwank 1.1 
2480                           /* The alternative before this one has a jump after it
2481                              which gets executed if it gets matched.  Adjust that
2482                              jump so it will jump to this alternative's analogous
2483                              jump (put in below, which in turn will jump to the next
2484                              (if any) alternative's such jump, etc.).  The last such
2485                              jump jumps to the correct final destination.  A picture:
2486                                       _____ _____
2487                                       |   | |   |
2488                                       |   v |   v
2489                                      a | b   | c
2490             
2491                              If we are at `b', then fixup_alt_jump right now points to a
2492                              three-byte space after `a'.  We'll put in the jump, set
2493                              fixup_alt_jump to right after `b', and leave behind three
2494                              bytes which we'll fill in when we get to after `c'.  */
2495             
2496                           if (fixup_alt_jump)
2497                             STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2498             
2499                           /* Mark and leave space for a jump after this alternative,
2500 rizwank 1.1                  to be filled in later either by next alternative or
2501                              when know we're at the end of a series of alternatives.  */
2502                           fixup_alt_jump = b;
2503                           GET_BUFFER_SPACE (3);
2504                           b += 3;
2505             
2506                           laststart = 0;
2507                           begalt = b;
2508                           break;
2509             
2510             
2511                         case '{':
2512                           /* If \{ is a literal.  */
2513                           if (!(syntax & RE_INTERVALS)
2514                                  /* If we're at `\{' and it's not the open-interval
2515                                     operator.  */
2516                               || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2517                               || (p - 2 == pattern  &&  p == pend))
2518                             goto normal_backslash;
2519             
2520                         handle_interval:
2521 rizwank 1.1               {
2522                             /* If got here, then the syntax allows intervals.  */
2523             
2524                             /* At least (most) this many matches must be made.  */
2525                             int lower_bound = -1, upper_bound = -1;
2526             
2527                             beg_interval = p - 1;
2528             
2529                             if (p == pend)
2530                               {
2531                                 if (syntax & RE_NO_BK_BRACES)
2532                                   goto unfetch_interval;
2533                                 else
2534                                   FREE_STACK_RETURN (REG_EBRACE);
2535                               }
2536             
2537                             GET_UNSIGNED_NUMBER (lower_bound);
2538             
2539                             if (c == ',')
2540                               {
2541                                 GET_UNSIGNED_NUMBER (upper_bound);
2542 rizwank 1.1                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2543                               }
2544                             else
2545                               /* Interval such as `{1}' => match exactly once. */
2546                               upper_bound = lower_bound;
2547             
2548                             if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2549                                 || lower_bound > upper_bound)
2550                               {
2551                                 if (syntax & RE_NO_BK_BRACES)
2552                                   goto unfetch_interval;
2553                                 else
2554                                   FREE_STACK_RETURN (REG_BADBR);
2555                               }
2556             
2557                             if (!(syntax & RE_NO_BK_BRACES))
2558                               {
2559                                 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2560             
2561                                 PATFETCH (c);
2562                               }
2563 rizwank 1.1 
2564                             if (c != '}')
2565                               {
2566                                 if (syntax & RE_NO_BK_BRACES)
2567                                   goto unfetch_interval;
2568                                 else
2569                                   FREE_STACK_RETURN (REG_BADBR);
2570                               }
2571             
2572                             /* We just parsed a valid interval.  */
2573             
2574                             /* If it's invalid to have no preceding re.  */
2575                             if (!laststart)
2576                               {
2577                                 if (syntax & RE_CONTEXT_INVALID_OPS)
2578                                   FREE_STACK_RETURN (REG_BADRPT);
2579                                 else if (syntax & RE_CONTEXT_INDEP_OPS)
2580                                   laststart = b;
2581                                 else
2582                                   goto unfetch_interval;
2583                               }
2584 rizwank 1.1 
2585                             /* If the upper bound is zero, don't want to succeed at
2586                                all; jump from `laststart' to `b + 3', which will be
2587                                the end of the buffer after we insert the jump.  */
2588                              if (upper_bound == 0)
2589                                {
2590                                  GET_BUFFER_SPACE (3);
2591                                  INSERT_JUMP (jump, laststart, b + 3);
2592                                  b += 3;
2593                                }
2594             
2595                              /* Otherwise, we have a nontrivial interval.  When
2596                                 we're all done, the pattern will look like:
2597                                   set_number_at <jump count> <upper bound>
2598                                   set_number_at <succeed_n count> <lower bound>
2599                                   succeed_n <after jump addr> <succeed_n count>
2600                                   <body of loop>
2601                                   jump_n <succeed_n addr> <jump count>
2602                                 (The upper bound and `jump_n' are omitted if
2603                                 `upper_bound' is 1, though.)  */
2604                              else
2605 rizwank 1.1                    { /* If the upper bound is > 1, we need to insert
2606                                     more at the end of the loop.  */
2607                                  unsigned nbytes = 10 + (upper_bound > 1) * 10;
2608             
2609                                  GET_BUFFER_SPACE (nbytes);
2610             
2611                                  /* Initialize lower bound of the `succeed_n', even
2612                                     though it will be set during matching by its
2613                                     attendant `set_number_at' (inserted next),
2614                                     because `re_compile_fastmap' needs to know.
2615                                     Jump to the `jump_n' we might insert below.  */
2616                                  INSERT_JUMP2 (succeed_n, laststart,
2617                                                b + 5 + (upper_bound > 1) * 5,
2618                                                lower_bound);
2619                                  b += 5;
2620             
2621                                  /* Code to initialize the lower bound.  Insert
2622                                     before the `succeed_n'.  The `5' is the last two
2623                                     bytes of this `set_number_at', plus 3 bytes of
2624                                     the following `succeed_n'.  */
2625                                  insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2626 rizwank 1.1                      b += 5;
2627             
2628                                  if (upper_bound > 1)
2629                                    { /* More than one repetition is allowed, so
2630                                         append a backward jump to the `succeed_n'
2631                                         that starts this interval.
2632             
2633                                         When we've reached this during matching,
2634                                         we'll have matched the interval once, so
2635                                         jump back only `upper_bound - 1' times.  */
2636                                      STORE_JUMP2 (jump_n, b, laststart + 5,
2637                                                   upper_bound - 1);
2638                                      b += 5;
2639             
2640                                      /* The location we want to set is the second
2641                                         parameter of the `jump_n'; that is `b-2' as
2642                                         an absolute address.  `laststart' will be
2643                                         the `set_number_at' we're about to insert;
2644                                         `laststart+3' the number to set, the source
2645                                         for the relative address.  But we are
2646                                         inserting into the middle of the pattern --
2647 rizwank 1.1                             so everything is getting moved up by 5.
2648                                         Conclusion: (b - 2) - (laststart + 3) + 5,
2649                                         i.e., b - laststart.
2650             
2651                                         We insert this at the beginning of the loop
2652                                         so that if we fail during matching, we'll
2653                                         reinitialize the bounds.  */
2654                                      insert_op2 (set_number_at, laststart, b - laststart,
2655                                                  upper_bound - 1, b);
2656                                      b += 5;
2657                                    }
2658                                }
2659                             pending_exact = 0;
2660                             beg_interval = NULL;
2661                           }
2662                           break;
2663             
2664                         unfetch_interval:
2665                           /* If an invalid interval, match the characters as literals.  */
2666                            assert (beg_interval);
2667                            p = beg_interval;
2668 rizwank 1.1                beg_interval = NULL;
2669             
2670                            /* normal_char and normal_backslash need `c'.  */
2671                            PATFETCH (c);
2672             
2673                            if (!(syntax & RE_NO_BK_BRACES))
2674                              {
2675                                if (p > pattern  &&  p[-1] == '\\')
2676                                  goto normal_backslash;
2677                              }
2678                            goto normal_char;
2679             
2680             #ifdef emacs
2681                         /* There is no way to specify the before_dot and after_dot
2682                            operators.  rms says this is ok.  --karl  */
2683                         case '=':
2684                           BUF_PUSH (at_dot);
2685                           break;
2686             
2687                         case 's':
2688                           laststart = b;
2689 rizwank 1.1               PATFETCH (c);
2690                           BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2691                           break;
2692             
2693                         case 'S':
2694                           laststart = b;
2695                           PATFETCH (c);
2696                           BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2697                           break;
2698             #endif /* emacs */
2699             
2700             
2701                         case 'w':
2702             	      if (re_syntax_options & RE_NO_GNU_OPS)
2703             		goto normal_char;
2704                           laststart = b;
2705                           BUF_PUSH (wordchar);
2706                           break;
2707             
2708             
2709                         case 'W':
2710 rizwank 1.1 	      if (re_syntax_options & RE_NO_GNU_OPS)
2711             		goto normal_char;
2712                           laststart = b;
2713                           BUF_PUSH (notwordchar);
2714                           break;
2715             
2716             
2717                         case '<':
2718             	      if (re_syntax_options & RE_NO_GNU_OPS)
2719             		goto normal_char;
2720                           BUF_PUSH (wordbeg);
2721                           break;
2722             
2723                         case '>':
2724             	      if (re_syntax_options & RE_NO_GNU_OPS)
2725             		goto normal_char;
2726                           BUF_PUSH (wordend);
2727                           break;
2728             
2729                         case 'b':
2730             	      if (re_syntax_options & RE_NO_GNU_OPS)
2731 rizwank 1.1 		goto normal_char;
2732                           BUF_PUSH (wordbound);
2733                           break;
2734             
2735                         case 'B':
2736             	      if (re_syntax_options & RE_NO_GNU_OPS)
2737             		goto normal_char;
2738                           BUF_PUSH (notwordbound);
2739                           break;
2740             
2741                         case '`':
2742             	      if (re_syntax_options & RE_NO_GNU_OPS)
2743             		goto normal_char;
2744                           BUF_PUSH (begbuf);
2745                           break;
2746             
2747                         case '\'':
2748             	      if (re_syntax_options & RE_NO_GNU_OPS)
2749             		goto normal_char;
2750                           BUF_PUSH (endbuf);
2751                           break;
2752 rizwank 1.1 
2753                         case '1': case '2': case '3': case '4': case '5':
2754                         case '6': case '7': case '8': case '9':
2755                           if (syntax & RE_NO_BK_REFS)
2756                             goto normal_char;
2757             
2758                           c1 = c - '0';
2759             
2760                           if (c1 > regnum)
2761                             FREE_STACK_RETURN (REG_ESUBREG);
2762             
2763                           /* Can't back reference to a subexpression if inside of it.  */
2764                           if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2765                             goto normal_char;
2766             
2767                           laststart = b;
2768                           BUF_PUSH_2 (duplicate, c1);
2769                           break;
2770             
2771             
2772                         case '+':
2773 rizwank 1.1             case '?':
2774                           if (syntax & RE_BK_PLUS_QM)
2775                             goto handle_plus;
2776                           else
2777                             goto normal_backslash;
2778             
2779                         default:
2780                         normal_backslash:
2781                           /* You might think it would be useful for \ to mean
2782                              not to translate; but if we don't translate it
2783                              it will never match anything.  */
2784                           c = TRANSLATE (c);
2785                           goto normal_char;
2786                         }
2787                       break;
2788             
2789             
2790             	default:
2791                     /* Expects the character in `c'.  */
2792             	normal_char:
2793             	      /* If no exactn currently being built.  */
2794 rizwank 1.1           if (!pending_exact
2795             
2796                           /* If last exactn not at current position.  */
2797                           || pending_exact + *pending_exact + 1 != b
2798             
2799                           /* We have only one byte following the exactn for the count.  */
2800             	      || *pending_exact == (1 << BYTEWIDTH) - 1
2801             
2802                           /* If followed by a repetition operator.  */
2803                           || *p == '*' || *p == '^'
2804             	      || ((syntax & RE_BK_PLUS_QM)
2805             		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2806             		  : (*p == '+' || *p == '?'))
2807             	      || ((syntax & RE_INTERVALS)
2808                               && ((syntax & RE_NO_BK_BRACES)
2809             		      ? *p == '{'
2810                                   : (p[0] == '\\' && p[1] == '{'))))
2811             	    {
2812             	      /* Start building a new exactn.  */
2813             
2814                           laststart = b;
2815 rizwank 1.1 
2816             	      BUF_PUSH_2 (exactn, 0);
2817             	      pending_exact = b - 1;
2818                         }
2819             
2820             	  BUF_PUSH (c);
2821                       (*pending_exact)++;
2822             	  break;
2823                     } /* switch (c) */
2824                 } /* while p != pend */
2825             
2826             
2827               /* Through the pattern now.  */
2828             
2829               if (fixup_alt_jump)
2830                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2831             
2832               if (!COMPILE_STACK_EMPTY)
2833                 FREE_STACK_RETURN (REG_EPAREN);
2834             
2835               /* If we don't want backtracking, force success
2836 rizwank 1.1      the first time we reach the end of the compiled pattern.  */
2837               if (syntax & RE_NO_POSIX_BACKTRACKING)
2838                 BUF_PUSH (succeed);
2839             
2840               free (compile_stack.stack);
2841             
2842               /* We have succeeded; set the length of the buffer.  */
2843               bufp->used = b - bufp->buffer;
2844             
2845             #ifdef DEBUG
2846               if (debug)
2847                 {
2848                   DEBUG_PRINT1 ("\nCompiled pattern: \n");
2849                   print_compiled_pattern (bufp);
2850                 }
2851             #endif /* DEBUG */
2852             
2853             #ifndef MATCH_MAY_ALLOCATE
2854               /* Initialize the failure stack to the largest possible stack.  This
2855                  isn't necessary unless we're trying to avoid calling alloca in
2856                  the search and match routines.  */
2857 rizwank 1.1   {
2858                 int num_regs = bufp->re_nsub + 1;
2859             
2860                 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2861                    is strictly greater than re_max_failures, the largest possible stack
2862                    is 2 * re_max_failures failure points.  */
2863                 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2864                   {
2865             	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2866             
2867             #ifdef emacs
2868             	if (! fail_stack.stack)
2869             	  fail_stack.stack
2870             	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
2871             					    * sizeof (fail_stack_elt_t));
2872             	else
2873             	  fail_stack.stack
2874             	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2875             					     (fail_stack.size
2876             					      * sizeof (fail_stack_elt_t)));
2877             #else /* not emacs */
2878 rizwank 1.1 	if (! fail_stack.stack)
2879             	  fail_stack.stack
2880             	    = (fail_stack_elt_t *) malloc (fail_stack.size
2881             					   * sizeof (fail_stack_elt_t));
2882             	else
2883             	  fail_stack.stack
2884             	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
2885             					    (fail_stack.size
2886             					     * sizeof (fail_stack_elt_t)));
2887             #endif /* not emacs */
2888                   }
2889             
2890                 regex_grow_registers (num_regs);
2891               }
2892             #endif /* not MATCH_MAY_ALLOCATE */
2893             
2894               return REG_NOERROR;
2895             } /* regex_compile */
2896             
2897             /* Subroutines for `regex_compile'.  */
2898             
2899 rizwank 1.1 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
2900             
2901             static void
2902             store_op1 (op, loc, arg)
2903                 re_opcode_t op;
2904                 unsigned char *loc;
2905                 int arg;
2906             {
2907               *loc = (unsigned char) op;
2908               STORE_NUMBER (loc + 1, arg);
2909             }
2910             
2911             
2912             /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
2913             
2914             static void
2915             store_op2 (op, loc, arg1, arg2)
2916                 re_opcode_t op;
2917                 unsigned char *loc;
2918                 int arg1, arg2;
2919             {
2920 rizwank 1.1   *loc = (unsigned char) op;
2921               STORE_NUMBER (loc + 1, arg1);
2922               STORE_NUMBER (loc + 3, arg2);
2923             }
2924             
2925             
2926             /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2927                for OP followed by two-byte integer parameter ARG.  */
2928             
2929             static void
2930             insert_op1 (op, loc, arg, end)
2931                 re_opcode_t op;
2932                 unsigned char *loc;
2933                 int arg;
2934                 unsigned char *end;
2935             {
2936               register unsigned char *pfrom = end;
2937               register unsigned char *pto = end + 3;
2938             
2939               while (pfrom != loc)
2940                 *--pto = *--pfrom;
2941 rizwank 1.1 
2942               store_op1 (op, loc, arg);
2943             }
2944             
2945             
2946             /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
2947             
2948             static void
2949             insert_op2 (op, loc, arg1, arg2, end)
2950                 re_opcode_t op;
2951                 unsigned char *loc;
2952                 int arg1, arg2;
2953                 unsigned char *end;
2954             {
2955               register unsigned char *pfrom = end;
2956               register unsigned char *pto = end + 5;
2957             
2958               while (pfrom != loc)
2959                 *--pto = *--pfrom;
2960             
2961               store_op2 (op, loc, arg1, arg2);
2962 rizwank 1.1 }
2963             
2964             
2965             /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
2966                after an alternative or a begin-subexpression.  We assume there is at
2967                least one character before the ^.  */
2968             
2969             static boolean
2970             at_begline_loc_p (pattern, p, syntax)
2971                 const char *pattern, *p;
2972                 reg_syntax_t syntax;
2973             {
2974               const char *prev = p - 2;
2975               boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2976             
2977               return
2978                    /* After a subexpression?  */
2979                    (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2980                    /* After an alternative?  */
2981                 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2982             }
2983 rizwank 1.1 
2984             
2985             /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
2986                at least one character after the $, i.e., `P < PEND'.  */
2987             
2988             static boolean
2989             at_endline_loc_p (p, pend, syntax)
2990                 const char *p, *pend;
2991                 reg_syntax_t syntax;
2992             {
2993               const char *next = p;
2994               boolean next_backslash = *next == '\\';
2995               const char *next_next = p + 1 < pend ? p + 1 : 0;
2996             
2997               return
2998                    /* Before a subexpression?  */
2999                    (syntax & RE_NO_BK_PARENS ? *next == ')'
3000                     : next_backslash && next_next && *next_next == ')')
3001                    /* Before an alternative?  */
3002                 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3003                     : next_backslash && next_next && *next_next == '|');
3004 rizwank 1.1 }
3005             
3006             
3007             /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3008                false if it's not.  */
3009             
3010             static boolean
3011             group_in_compile_stack (compile_stack, regnum)
3012                 compile_stack_type compile_stack;
3013                 regnum_t regnum;
3014             {
3015               int this_element;
3016             
3017               for (this_element = compile_stack.avail - 1;
3018                    this_element >= 0;
3019                    this_element--)
3020                 if (compile_stack.stack[this_element].regnum == regnum)
3021                   return true;
3022             
3023               return false;
3024             }
3025 rizwank 1.1 
3026             
3027             /* Read the ending character of a range (in a bracket expression) from the
3028                uncompiled pattern *P_PTR (which ends at PEND).  We assume the
3029                starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
3030                Then we set the translation of all bits between the starting and
3031                ending characters (inclusive) in the compiled pattern B.
3032             
3033                Return an error code.
3034             
3035                We use these short variable names so we can use the same macros as
3036                `regex_compile' itself.  */
3037             
3038             static reg_errcode_t
3039             compile_range (p_ptr, pend, translate, syntax, b)
3040                 const char **p_ptr, *pend;
3041                 RE_TRANSLATE_TYPE translate;
3042                 reg_syntax_t syntax;
3043                 unsigned char *b;
3044             {
3045               unsigned this_char;
3046 rizwank 1.1 
3047               const char *p = *p_ptr;
3048               unsigned int range_start, range_end;
3049             
3050               if (p == pend)
3051                 return REG_ERANGE;
3052             
3053               /* Even though the pattern is a signed `char *', we need to fetch
3054                  with unsigned char *'s; if the high bit of the pattern character
3055                  is set, the range endpoints will be negative if we fetch using a
3056                  signed char *.
3057             
3058                  We also want to fetch the endpoints without translating them; the
3059                  appropriate translation is done in the bit-setting loop below.  */
3060               /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
3061               range_start = ((const unsigned char *) p)[-2];
3062               range_end   = ((const unsigned char *) p)[0];
3063             
3064               /* Have to increment the pointer into the pattern string, so the
3065                  caller isn't still at the ending character.  */
3066               (*p_ptr)++;
3067 rizwank 1.1 
3068               /* If the start is after the end, the range is empty.  */
3069               if (range_start > range_end)
3070                 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3071             
3072               /* Here we see why `this_char' has to be larger than an `unsigned
3073                  char' -- the range is inclusive, so if `range_end' == 0xff
3074                  (assuming 8-bit characters), we would otherwise go into an infinite
3075                  loop, since all characters <= 0xff.  */
3076               for (this_char = range_start; this_char <= range_end; this_char++)
3077                 {
3078                   SET_LIST_BIT (TRANSLATE (this_char));
3079                 }
3080             
3081               return REG_NOERROR;
3082             }
3083             
3084             /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3085                BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3086                characters can start a string that matches the pattern.  This fastmap
3087                is used by re_search to skip quickly over impossible starting points.
3088 rizwank 1.1 
3089                The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3090                area as BUFP->fastmap.
3091             
3092                We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3093                the pattern buffer.
3094             
3095                Returns 0 if we succeed, -2 if an internal error.   */
3096             
3097             int
3098             re_compile_fastmap (bufp)
3099                  struct re_pattern_buffer *bufp;
3100             {
3101               int j, k;
3102             #ifdef MATCH_MAY_ALLOCATE
3103               fail_stack_type fail_stack;
3104             #endif
3105             #ifndef REGEX_MALLOC
3106               char *destination;
3107             #endif
3108               /* We don't push any register information onto the failure stack.  */
3109 rizwank 1.1   unsigned num_regs = 0;
3110             
3111               register char *fastmap = bufp->fastmap;
3112               unsigned char *pattern = bufp->buffer;
3113               unsigned char *p = pattern;
3114               register unsigned char *pend = pattern + bufp->used;
3115             
3116             #ifdef REL_ALLOC
3117               /* This holds the pointer to the failure stack, when
3118                  it is allocated relocatably.  */
3119               fail_stack_elt_t *failure_stack_ptr;
3120             #endif
3121             
3122               /* Assume that each path through the pattern can be null until
3123                  proven otherwise.  We set this false at the bottom of switch
3124                  statement, to which we get only if a particular path doesn't
3125                  match the empty string.  */
3126               boolean path_can_be_null = true;
3127             
3128               /* We aren't doing a `succeed_n' to begin with.  */
3129               boolean succeed_n_p = false;
3130 rizwank 1.1 
3131               assert (fastmap != NULL && p != NULL);
3132             
3133               INIT_FAIL_STACK ();
3134               bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
3135               bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
3136               bufp->can_be_null = 0;
3137             
3138               while (1)
3139                 {
3140                   if (p == pend || *p == succeed)
3141             	{
3142             	  /* We have reached the (effective) end of pattern.  */
3143             	  if (!FAIL_STACK_EMPTY ())
3144             	    {
3145             	      bufp->can_be_null |= path_can_be_null;
3146             
3147             	      /* Reset for next path.  */
3148             	      path_can_be_null = true;
3149             
3150             	      p = fail_stack.stack[--fail_stack.avail].pointer;
3151 rizwank 1.1 
3152             	      continue;
3153             	    }
3154             	  else
3155             	    break;
3156             	}
3157             
3158                   /* We should never be about to go beyond the end of the pattern.  */
3159                   assert (p < pend);
3160             
3161                   switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3162             	{
3163             
3164                     /* I guess the idea here is to simply not bother with a fastmap
3165                        if a backreference is used, since it's too hard to figure out
3166                        the fastmap for the corresponding group.  Setting
3167                        `can_be_null' stops `re_search_2' from using the fastmap, so
3168                        that is all we do.  */
3169             	case duplicate:
3170             	  bufp->can_be_null = 1;
3171                       goto done;
3172 rizwank 1.1 
3173             
3174                   /* Following are the cases which match a character.  These end
3175                      with `break'.  */
3176             
3177             	case exactn:
3178                       fastmap[p[1]] = 1;
3179             	  break;
3180             
3181             
3182                     case charset:
3183                       for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3184             	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3185                           fastmap[j] = 1;
3186             	  break;
3187             
3188             
3189             	case charset_not:
3190             	  /* Chars beyond end of map must be allowed.  */
3191             	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3192                         fastmap[j] = 1;
3193 rizwank 1.1 
3194             	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3195             	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3196                           fastmap[j] = 1;
3197                       break;
3198             
3199             
3200             	case wordchar:
3201             	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3202             	    if (SYNTAX (j) == Sword)
3203             	      fastmap[j] = 1;
3204             	  break;
3205             
3206             
3207             	case notwordchar:
3208             	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3209             	    if (SYNTAX (j) != Sword)
3210             	      fastmap[j] = 1;
3211             	  break;
3212             
3213             
3214 rizwank 1.1         case anychar:
3215             	  {
3216             	    int fastmap_newline = fastmap['\n'];
3217             
3218             	    /* `.' matches anything ...  */
3219             	    for (j = 0; j < (1 << BYTEWIDTH); j++)
3220             	      fastmap[j] = 1;
3221             
3222             	    /* ... except perhaps newline.  */
3223             	    if (!(bufp->syntax & RE_DOT_NEWLINE))
3224             	      fastmap['\n'] = fastmap_newline;
3225             
3226             	    /* Return if we have already set `can_be_null'; if we have,
3227             	       then the fastmap is irrelevant.  Something's wrong here.  */
3228             	    else if (bufp->can_be_null)
3229             	      goto done;
3230             
3231             	    /* Otherwise, have to check alternative paths.  */
3232             	    break;
3233             	  }
3234             
3235 rizwank 1.1 #ifdef emacs
3236                     case syntaxspec:
3237             	  k = *p++;
3238             	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3239             	    if (SYNTAX (j) == (enum syntaxcode) k)
3240             	      fastmap[j] = 1;
3241             	  break;
3242             
3243             
3244             	case notsyntaxspec:
3245             	  k = *p++;
3246             	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3247             	    if (SYNTAX (j) != (enum syntaxcode) k)
3248             	      fastmap[j] = 1;
3249             	  break;
3250             
3251             
3252                   /* All cases after this match the empty string.  These end with
3253                      `continue'.  */
3254             
3255             
3256 rizwank 1.1 	case before_dot:
3257             	case at_dot:
3258             	case after_dot:
3259                       continue;
3260             #endif /* emacs */
3261             
3262             
3263                     case no_op:
3264                     case begline:
3265                     case endline:
3266             	case begbuf:
3267             	case endbuf:
3268             	case wordbound:
3269             	case notwordbound:
3270             	case wordbeg:
3271             	case wordend:
3272                     case push_dummy_failure:
3273                       continue;
3274             
3275             
3276             	case jump_n:
3277 rizwank 1.1         case pop_failure_jump:
3278             	case maybe_pop_jump:
3279             	case jump:
3280                     case jump_past_alt:
3281             	case dummy_failure_jump:
3282                       EXTRACT_NUMBER_AND_INCR (j, p);
3283             	  p += j;
3284             	  if (j > 0)
3285             	    continue;
3286             
3287                       /* Jump backward implies we just went through the body of a
3288                          loop and matched nothing.  Opcode jumped to should be
3289                          `on_failure_jump' or `succeed_n'.  Just treat it like an
3290                          ordinary jump.  For a * loop, it has pushed its failure
3291                          point already; if so, discard that as redundant.  */
3292                       if ((re_opcode_t) *p != on_failure_jump
3293             	      && (re_opcode_t) *p != succeed_n)
3294             	    continue;
3295             
3296                       p++;
3297                       EXTRACT_NUMBER_AND_INCR (j, p);
3298 rizwank 1.1           p += j;
3299             
3300                       /* If what's on the stack is where we are now, pop it.  */
3301                       if (!FAIL_STACK_EMPTY ()
3302             	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3303                         fail_stack.avail--;
3304             
3305                       continue;
3306             
3307             
3308                     case on_failure_jump:
3309                     case on_failure_keep_string_jump:
3310             	handle_on_failure_jump:
3311                       EXTRACT_NUMBER_AND_INCR (j, p);
3312             
3313                       /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3314                          end of the pattern.  We don't want to push such a point,
3315                          since when we restore it above, entering the switch will
3316                          increment `p' past the end of the pattern.  We don't need
3317                          to push such a point since we obviously won't find any more
3318                          fastmap entries beyond `pend'.  Such a pattern can match
3319 rizwank 1.1              the null string, though.  */
3320                       if (p + j < pend)
3321                         {
3322                           if (!PUSH_PATTERN_OP (p + j, fail_stack))
3323             		{
3324             		  RESET_FAIL_STACK ();
3325             		  return -2;
3326             		}
3327                         }
3328                       else
3329                         bufp->can_be_null = 1;
3330             
3331                       if (succeed_n_p)
3332                         {
3333                           EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
3334                           succeed_n_p = false;
3335             	    }
3336             
3337                       continue;
3338             
3339             
3340 rizwank 1.1 	case succeed_n:
3341                       /* Get to the number of times to succeed.  */
3342                       p += 2;
3343             
3344                       /* Increment p past the n for when k != 0.  */
3345                       EXTRACT_NUMBER_AND_INCR (k, p);
3346                       if (k == 0)
3347             	    {
3348                           p -= 4;
3349               	      succeed_n_p = true;  /* Spaghetti code alert.  */
3350                           goto handle_on_failure_jump;
3351                         }
3352                       continue;
3353             
3354             
3355             	case set_number_at:
3356                       p += 4;
3357                       continue;
3358             
3359             
3360             	case start_memory:
3361 rizwank 1.1         case stop_memory:
3362             	  p += 2;
3363             	  continue;
3364             
3365             
3366             	default:
3367                       abort (); /* We have listed all the cases.  */
3368                     } /* switch *p++ */
3369             
3370                   /* Getting here means we have found the possible starting
3371                      characters for one path of the pattern -- and that the empty
3372                      string does not match.  We need not follow this path further.
3373                      Instead, look at the next alternative (remembered on the
3374                      stack), or quit if no more.  The test at the top of the loop
3375                      does these things.  */
3376                   path_can_be_null = false;
3377                   p = pend;
3378                 } /* while p */
3379             
3380               /* Set `can_be_null' for the last path (also the first path, if the
3381                  pattern is empty).  */
3382 rizwank 1.1   bufp->can_be_null |= path_can_be_null;
3383             
3384              done:
3385               RESET_FAIL_STACK ();
3386               return 0;
3387             } /* re_compile_fastmap */
3388             
3389             /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3390                ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3391                this memory for recording register information.  STARTS and ENDS
3392                must be allocated using the malloc library routine, and must each
3393                be at least NUM_REGS * sizeof (regoff_t) bytes long.
3394             
3395                If NUM_REGS == 0, then subsequent matches should allocate their own
3396                register data.
3397             
3398                Unless this function is called, the first search or match using
3399                PATTERN_BUFFER will allocate its own register data, without
3400                freeing the old data.  */
3401             
3402             void
3403 rizwank 1.1 re_set_registers (bufp, regs, num_regs, starts, ends)
3404                 struct re_pattern_buffer *bufp;
3405                 struct re_registers *regs;
3406                 unsigned num_regs;
3407                 regoff_t *starts, *ends;
3408             {
3409               if (num_regs)
3410                 {
3411                   bufp->regs_allocated = REGS_REALLOCATE;
3412                   regs->num_regs = num_regs;
3413                   regs->start = starts;
3414                   regs->end = ends;
3415                 }
3416               else
3417                 {
3418                   bufp->regs_allocated = REGS_UNALLOCATED;
3419                   regs->num_regs = 0;
3420                   regs->start = regs->end = (regoff_t *) 0;
3421                 }
3422             }
3423             
3424 rizwank 1.1 /* Searching routines.  */
3425             
3426             /* Like re_search_2, below, but only one string is specified, and
3427                doesn't let you say where to stop matching. */
3428             
3429             int
3430             re_search (bufp, string, size, startpos, range, regs)
3431                  struct re_pattern_buffer *bufp;
3432                  const char *string;
3433                  int size, startpos, range;
3434                  struct re_registers *regs;
3435             {
3436               return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3437             		      regs, size);
3438             }
3439             
3440             
3441             /* Using the compiled pattern in BUFP->buffer, first tries to match the
3442                virtual concatenation of STRING1 and STRING2, starting first at index
3443                STARTPOS, then at STARTPOS + 1, and so on.
3444             
3445 rizwank 1.1    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3446             
3447                RANGE is how far to scan while trying to match.  RANGE = 0 means try
3448                only at STARTPOS; in general, the last start tried is STARTPOS +
3449                RANGE.
3450             
3451                In REGS, return the indices of the virtual concatenation of STRING1
3452                and STRING2 that matched the entire BUFP->buffer and its contained
3453                subexpressions.
3454             
3455                Do not consider matching one past the index STOP in the virtual
3456                concatenation of STRING1 and STRING2.
3457             
3458                We return either the position in the strings at which the match was
3459                found, -1 if no match, or -2 if error (such as failure
3460                stack overflow).  */
3461             
3462             int
3463             re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3464                  struct re_pattern_buffer *bufp;
3465                  const char *string1, *string2;
3466 rizwank 1.1      int size1, size2;
3467                  int startpos;
3468                  int range;
3469                  struct re_registers *regs;
3470                  int stop;
3471             {
3472               int val;
3473               register char *fastmap = bufp->fastmap;
3474               register RE_TRANSLATE_TYPE translate = bufp->translate;
3475               int total_size = size1 + size2;
3476               int endpos = startpos + range;
3477             
3478               /* Check for out-of-range STARTPOS.  */
3479               if (startpos < 0 || startpos > total_size)
3480                 return -1;
3481             
3482               /* Fix up RANGE if it might eventually take us outside
3483                  the virtual concatenation of STRING1 and STRING2.
3484                  Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3485               if (endpos < 0)
3486                 range = 0 - startpos;
3487 rizwank 1.1   else if (endpos > total_size)
3488                 range = total_size - startpos;
3489             
3490               /* If the search isn't to be a backwards one, don't waste time in a
3491                  search for a pattern that must be anchored.  */
3492               if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3493                 {
3494                   if (startpos > 0)
3495             	return -1;
3496                   else
3497             	range = 1;
3498                 }
3499             
3500             #ifdef emacs
3501               /* In a forward search for something that starts with \=.
3502                  don't keep searching past point.  */
3503               if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3504                 {
3505                   range = PT - startpos;
3506                   if (range <= 0)
3507             	return -1;
3508 rizwank 1.1     }
3509             #endif /* emacs */
3510             
3511               /* Update the fastmap now if not correct already.  */
3512               if (fastmap && !bufp->fastmap_accurate)
3513                 if (re_compile_fastmap (bufp) == -2)
3514                   return -2;
3515             
3516               /* Loop through the string, looking for a place to start matching.  */
3517               for (;;)
3518                 {
3519                   /* If a fastmap is supplied, skip quickly over characters that
3520                      cannot be the start of a match.  If the pattern can match the
3521                      null string, however, we don't need to skip characters; we want
3522                      the first null string.  */
3523                   if (fastmap && startpos < total_size && !bufp->can_be_null)
3524             	{
3525             	  if (range > 0)	/* Searching forwards.  */
3526             	    {
3527             	      register const char *d;
3528             	      register int lim = 0;
3529 rizwank 1.1 	      int irange = range;
3530             
3531                           if (startpos < size1 && startpos + range >= size1)
3532                             lim = range - (size1 - startpos);
3533             
3534             	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3535             
3536                           /* Written out as an if-else to avoid testing `translate'
3537                              inside the loop.  */
3538             	      if (translate)
3539                             while (range > lim
3540                                    && !fastmap[(unsigned char)
3541             				   translate[(unsigned char) *d++]])
3542                               range--;
3543             	      else
3544                             while (range > lim && !fastmap[(unsigned char) *d++])
3545                               range--;
3546             
3547             	      startpos += irange - range;
3548             	    }
3549             	  else				/* Searching backwards.  */
3550 rizwank 1.1 	    {
3551             	      register char c = (size1 == 0 || startpos >= size1
3552                                              ? string2[startpos - size1]
3553                                              : string1[startpos]);
3554             
3555             	      if (!fastmap[(unsigned char) TRANSLATE (c)])
3556             		goto advance;
3557             	    }
3558             	}
3559             
3560                   /* If can't match the null string, and that's all we have left, fail.  */
3561                   if (range >= 0 && startpos == total_size && fastmap
3562                       && !bufp->can_be_null)
3563             	return -1;
3564             
3565                   val = re_match_2_internal (bufp, string1, size1, string2, size2,
3566             				 startpos, regs, stop);
3567             #ifndef REGEX_MALLOC
3568             #ifdef C_ALLOCA
3569                   alloca (0);
3570             #endif
3571 rizwank 1.1 #endif
3572             
3573                   if (val >= 0)
3574             	return startpos;
3575             
3576                   if (val == -2)
3577             	return -2;
3578             
3579                 advance:
3580                   if (!range)
3581                     break;
3582                   else if (range > 0)
3583                     {
3584                       range--;
3585                       startpos++;
3586                     }
3587                   else
3588                     {
3589                       range++;
3590                       startpos--;
3591                     }
3592 rizwank 1.1     }
3593               return -1;
3594             } /* re_search_2 */
3595             
3596             /* This converts PTR, a pointer into one of the search strings `string1'
3597                and `string2' into an offset from the beginning of that string.  */
3598             #define POINTER_TO_OFFSET(ptr)			\
3599               (FIRST_STRING_P (ptr)				\
3600                ? ((regoff_t) ((ptr) - string1))		\
3601                : ((regoff_t) ((ptr) - string2 + size1)))
3602             
3603             /* Macros for dealing with the split strings in re_match_2.  */
3604             
3605             #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3606             
3607             /* Call before fetching a character with *d.  This switches over to
3608                string2 if necessary.  */
3609             #define PREFETCH()							\
3610               while (d == dend)						    	\
3611                 {									\
3612                   /* End of string2 => fail.  */					\
3613 rizwank 1.1       if (dend == end_match_2) 						\
3614                     goto fail;							\
3615                   /* End of string1 => advance to string2.  */ 			\
3616                   d = string2;						        \
3617                   dend = end_match_2;						\
3618                 }
3619             
3620             
3621             /* Test if at very beginning or at very end of the virtual concatenation
3622                of `string1' and `string2'.  If only one string, it's `string2'.  */
3623             #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3624             #define AT_STRINGS_END(d) ((d) == end2)
3625             
3626             
3627             /* Test if D points to a character which is word-constituent.  We have
3628                two special cases to check for: if past the end of string1, look at
3629                the first character in string2; and if before the beginning of
3630                string2, look at the last character in string1.  */
3631             #define WORDCHAR_P(d)							\
3632               (SYNTAX ((d) == end1 ? *string2					\
3633                        : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3634 rizwank 1.1    == Sword)
3635             
3636             /* Disabled due to a compiler bug -- see comment at case wordbound */
3637             #if 0
3638             /* Test if the character before D and the one at D differ with respect
3639                to being word-constituent.  */
3640             #define AT_WORD_BOUNDARY(d)						\
3641               (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3642                || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3643             #endif
3644             
3645             /* Free everything we malloc.  */
3646             #ifdef MATCH_MAY_ALLOCATE
3647             #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3648             #define FREE_VARIABLES()						\
3649               do {									\
3650                 REGEX_FREE_STACK (fail_stack.stack);				\
3651                 FREE_VAR (regstart);						\
3652                 FREE_VAR (regend);							\
3653                 FREE_VAR (old_regstart);						\
3654                 FREE_VAR (old_regend);						\
3655 rizwank 1.1     FREE_VAR (best_regstart);						\
3656                 FREE_VAR (best_regend);						\
3657                 FREE_VAR (reg_info);						\
3658                 FREE_VAR (reg_dummy);						\
3659                 FREE_VAR (reg_info_dummy);						\
3660               } while (0)
3661             #else
3662             #define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
3663             #endif /* not MATCH_MAY_ALLOCATE */
3664             
3665             /* These values must meet several constraints.  They must not be valid
3666                register values; since we have a limit of 255 registers (because
3667                we use only one byte in the pattern for the register number), we can
3668                use numbers larger than 255.  They must differ by 1, because of
3669                NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3670                be larger than the value for the highest register, so we do not try
3671                to actually save any registers when none are active.  */
3672             #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3673             #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3674             
3675             /* Matching routines.  */
3676 rizwank 1.1 
3677             #ifndef emacs   /* Emacs never uses this.  */
3678             /* re_match is like re_match_2 except it takes only a single string.  */
3679             
3680             int
3681             re_match (bufp, string, size, pos, regs)
3682                  struct re_pattern_buffer *bufp;
3683                  const char *string;
3684                  int size, pos;
3685                  struct re_registers *regs;
3686             {
3687               int result = re_match_2_internal (bufp, NULL, 0, string, size,
3688             				    pos, regs, size);
3689             #ifndef REGEX_MALLOC
3690             #ifdef C_ALLOCA
3691               alloca (0);
3692             #endif
3693             #endif
3694               return result;
3695             }
3696             #endif /* not emacs */
3697 rizwank 1.1 
3698             static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3699             						    unsigned char *end,
3700             						register_info_type *reg_info));
3701             static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3702             						  unsigned char *end,
3703             						register_info_type *reg_info));
3704             static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3705             							unsigned char *end,
3706             						register_info_type *reg_info));
3707             static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3708             				     int len, char *translate));
3709             
3710             /* re_match_2 matches the compiled pattern in BUFP against the
3711                the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3712                and SIZE2, respectively).  We start matching at POS, and stop
3713                matching at STOP.
3714             
3715                If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3716                store offsets for the substring each group matched in REGS.  See the
3717                documentation for exactly how many groups we fill.
3718 rizwank 1.1 
3719                We return -1 if no match, -2 if an internal error (such as the
3720                failure stack overflowing).  Otherwise, we return the length of the
3721                matched substring.  */
3722             
3723             int
3724             re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3725                  struct re_pattern_buffer *bufp;
3726                  const char *string1, *string2;
3727                  int size1, size2;
3728                  int pos;
3729                  struct re_registers *regs;
3730                  int stop;
3731             {
3732               int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3733             				    pos, regs, stop);
3734             #ifndef REGEX_MALLOC
3735             #ifdef C_ALLOCA
3736               alloca (0);
3737             #endif
3738             #endif
3739 rizwank 1.1   return result;
3740             }
3741             
3742             /* This is a separate function so that we can force an alloca cleanup
3743                afterwards.  */
3744             static int
3745             re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3746                  struct re_pattern_buffer *bufp;
3747                  const char *string1, *string2;
3748                  int size1, size2;
3749                  int pos;
3750                  struct re_registers *regs;
3751                  int stop;
3752             {
3753               /* General temporaries.  */
3754               int mcnt;
3755               unsigned char *p1;
3756             
3757               /* Just past the end of the corresponding string.  */
3758               const char *end1, *end2;
3759             
3760 rizwank 1.1   /* Pointers into string1 and string2, just past the last characters in
3761                  each to consider matching.  */
3762               const char *end_match_1, *end_match_2;
3763             
3764               /* Where we are in the data, and the end of the current string.  */
3765               const char *d, *dend;
3766             
3767               /* Where we are in the pattern, and the end of the pattern.  */
3768               unsigned char *p = bufp->buffer;
3769               register unsigned char *pend = p + bufp->used;
3770             
3771               /* Mark the opcode just after a start_memory, so we can test for an
3772                  empty subpattern when we get to the stop_memory.  */
3773               unsigned char *just_past_start_mem = 0;
3774             
3775               /* We use this to map every character in the string.  */
3776               RE_TRANSLATE_TYPE translate = bufp->translate;
3777             
3778               /* Failure point stack.  Each place that can handle a failure further
3779                  down the line pushes a failure point on this stack.  It consists of
3780                  restart, regend, and reg_info for all registers corresponding to
3781 rizwank 1.1      the subexpressions we're currently inside, plus the number of such
3782                  registers, and, finally, two char *'s.  The first char * is where
3783                  to resume scanning the pattern; the second one is where to resume
3784                  scanning the strings.  If the latter is zero, the failure point is
3785                  a ``dummy''; if a failure happens and the failure point is a dummy,
3786                  it gets discarded and the next next one is tried.  */
3787             #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3788               fail_stack_type fail_stack;
3789             #endif
3790             #ifdef DEBUG
3791               static unsigned failure_id = 0;
3792               unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3793             #endif
3794             
3795             #ifdef REL_ALLOC
3796               /* This holds the pointer to the failure stack, when
3797                  it is allocated relocatably.  */
3798               fail_stack_elt_t *failure_stack_ptr;
3799             #endif
3800             
3801               /* We fill all the registers internally, independent of what we
3802 rizwank 1.1      return, for use in backreferences.  The number here includes
3803                  an element for register zero.  */
3804               size_t num_regs = bufp->re_nsub + 1;
3805             
3806               /* The currently active registers.  */
3807               active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3808               active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3809             
3810               /* Information on the contents of registers. These are pointers into
3811                  the input strings; they record just what was matched (on this
3812                  attempt) by a subexpression part of the pattern, that is, the
3813                  regnum-th regstart pointer points to where in the pattern we began
3814                  matching and the regnum-th regend points to right after where we
3815                  stopped matching the regnum-th subexpression.  (The zeroth register
3816                  keeps track of what the whole pattern matches.)  */
3817             #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3818               const char **regstart, **regend;
3819             #endif
3820             
3821               /* If a group that's operated upon by a repetition operator fails to
3822                  match anything, then the register for its start will need to be
3823 rizwank 1.1      restored because it will have been set to wherever in the string we
3824                  are when we last see its open-group operator.  Similarly for a
3825                  register's end.  */
3826             #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3827               const char **old_regstart, **old_regend;
3828             #endif
3829             
3830               /* The is_active field of reg_info helps us keep track of which (possibly
3831                  nested) subexpressions we are currently in. The matched_something
3832                  field of reg_info[reg_num] helps us tell whether or not we have
3833                  matched any of the pattern so far this time through the reg_num-th
3834                  subexpression.  These two fields get reset each time through any
3835                  loop their register is in.  */
3836             #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3837               register_info_type *reg_info;
3838             #endif
3839             
3840               /* The following record the register info as found in the above
3841                  variables when we find a match better than any we've seen before.
3842                  This happens as we backtrack through the failure points, which in
3843                  turn happens only if we have not yet matched the entire string. */
3844 rizwank 1.1   unsigned best_regs_set = false;
3845             #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3846               const char **best_regstart, **best_regend;
3847             #endif
3848             
3849               /* Logically, this is `best_regend[0]'.  But we don't want to have to
3850                  allocate space for that if we're not allocating space for anything
3851                  else (see below).  Also, we never need info about register 0 for
3852                  any of the other register vectors, and it seems rather a kludge to
3853                  treat `best_regend' differently than the rest.  So we keep track of
3854                  the end of the best match so far in a separate variable.  We
3855                  initialize this to NULL so that when we backtrack the first time
3856                  and need to test it, it's not garbage.  */
3857               const char *match_end = NULL;
3858             
3859               /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
3860               int set_regs_matched_done = 0;
3861             
3862               /* Used when we pop values we don't care about.  */
3863             #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3864               const char **reg_dummy;
3865 rizwank 1.1   register_info_type *reg_info_dummy;
3866             #endif
3867             
3868             #ifdef DEBUG
3869               /* Counts the total number of registers pushed.  */
3870               unsigned num_regs_pushed = 0;
3871             #endif
3872             
3873               DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3874             
3875               INIT_FAIL_STACK ();
3876             
3877             #ifdef MATCH_MAY_ALLOCATE
3878               /* Do not bother to initialize all the register variables if there are
3879                  no groups in the pattern, as it takes a fair amount of time.  If
3880                  there are groups, we include space for register 0 (the whole
3881                  pattern), even though we never use it, since it simplifies the
3882                  array indexing.  We should fix this.  */
3883               if (bufp->re_nsub)
3884                 {
3885                   regstart = REGEX_TALLOC (num_regs, const char *);
3886 rizwank 1.1       regend = REGEX_TALLOC (num_regs, const char *);
3887                   old_regstart = REGEX_TALLOC (num_regs, const char *);
3888                   old_regend = REGEX_TALLOC (num_regs, const char *);
3889                   best_regstart = REGEX_TALLOC (num_regs, const char *);
3890                   best_regend = REGEX_TALLOC (num_regs, const char *);
3891                   reg_info = REGEX_TALLOC (num_regs, register_info_type);
3892                   reg_dummy = REGEX_TALLOC (num_regs, const char *);
3893                   reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3894             
3895                   if (!(regstart && regend && old_regstart && old_regend && reg_info
3896                         && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3897                     {
3898                       FREE_VARIABLES ();
3899                       return -2;
3900                     }
3901                 }
3902               else
3903                 {
3904                   /* We must initialize all our variables to NULL, so that
3905                      `FREE_VARIABLES' doesn't try to free them.  */
3906                   regstart = regend = old_regstart = old_regend = best_regstart
3907 rizwank 1.1         = best_regend = reg_dummy = NULL;
3908                   reg_info = reg_info_dummy = (register_info_type *) NULL;
3909                 }
3910             #endif /* MATCH_MAY_ALLOCATE */
3911             
3912               /* The starting position is bogus.  */
3913               if (pos < 0 || pos > size1 + size2)
3914                 {
3915                   FREE_VARIABLES ();
3916                   return -1;
3917                 }
3918             
3919               /* Initialize subexpression text positions to -1 to mark ones that no
3920                  start_memory/stop_memory has been seen for. Also initialize the
3921                  register information struct.  */
3922               for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3923                 {
3924                   regstart[mcnt] = regend[mcnt]
3925                     = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3926             
3927                   REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3928 rizwank 1.1       IS_ACTIVE (reg_info[mcnt]) = 0;
3929                   MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3930                   EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3931                 }
3932             
3933               /* We move `string1' into `string2' if the latter's empty -- but not if
3934                  `string1' is null.  */
3935               if (size2 == 0 && string1 != NULL)
3936                 {
3937                   string2 = string1;
3938                   size2 = size1;
3939                   string1 = 0;
3940                   size1 = 0;
3941                 }
3942               end1 = string1 + size1;
3943               end2 = string2 + size2;
3944             
3945               /* Compute where to stop matching, within the two strings.  */
3946               if (stop <= size1)
3947                 {
3948                   end_match_1 = string1 + stop;
3949 rizwank 1.1       end_match_2 = string2;
3950                 }
3951               else
3952                 {
3953                   end_match_1 = end1;
3954                   end_match_2 = string2 + stop - size1;
3955                 }
3956             
3957               /* `p' scans through the pattern as `d' scans through the data.
3958                  `dend' is the end of the input string that `d' points within.  `d'
3959                  is advanced into the following input string whenever necessary, but
3960                  this happens before fetching; therefore, at the beginning of the
3961                  loop, `d' can be pointing at the end of a string, but it cannot
3962                  equal `string2'.  */
3963               if (size1 > 0 && pos <= size1)
3964                 {
3965                   d = string1 + pos;
3966                   dend = end_match_1;
3967                 }
3968               else
3969                 {
3970 rizwank 1.1       d = string2 + pos - size1;
3971                   dend = end_match_2;
3972                 }
3973             
3974               DEBUG_PRINT1 ("The compiled pattern is:\n");
3975               DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3976               DEBUG_PRINT1 ("The string to match is: `");
3977               DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3978               DEBUG_PRINT1 ("'\n");
3979             
3980               /* This loops over pattern commands.  It exits by returning from the
3981                  function if the match is complete, or it drops through if the match
3982                  fails at this starting point in the input data.  */
3983               for (;;)
3984                 {
3985             #ifdef _LIBC
3986                   DEBUG_PRINT2 ("\n%p: ", p);
3987             #else
3988                   DEBUG_PRINT2 ("\n0x%x: ", p);
3989             #endif
3990             
3991 rizwank 1.1       if (p == pend)
3992             	{ /* End of pattern means we might have succeeded.  */
3993                       DEBUG_PRINT1 ("end of pattern ... ");
3994             
3995             	  /* If we haven't matched the entire string, and we want the
3996                          longest match, try backtracking.  */
3997                       if (d != end_match_2)
3998             	    {
3999             	      /* 1 if this match ends in the same string (string1 or string2)
4000             		 as the best previous match.  */
4001             	      boolean same_str_p = (FIRST_STRING_P (match_end)
4002             				    == MATCHING_IN_FIRST_STRING);
4003             	      /* 1 if this match is the best seen so far.  */
4004             	      boolean best_match_p;
4005             
4006             	      /* AIX compiler got confused when this was combined
4007             		 with the previous declaration.  */
4008             	      if (same_str_p)
4009             		best_match_p = d > match_end;
4010             	      else
4011             		best_match_p = !MATCHING_IN_FIRST_STRING;
4012 rizwank 1.1 
4013                           DEBUG_PRINT1 ("backtracking.\n");
4014             
4015                           if (!FAIL_STACK_EMPTY ())
4016                             { /* More failure points to try.  */
4017             
4018                               /* If exceeds best match so far, save it.  */
4019                               if (!best_regs_set || best_match_p)
4020                                 {
4021                                   best_regs_set = true;
4022                                   match_end = d;
4023             
4024                                   DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4025             
4026                                   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4027                                     {
4028                                       best_regstart[mcnt] = regstart[mcnt];
4029                                       best_regend[mcnt] = regend[mcnt];
4030                                     }
4031                                 }
4032                               goto fail;
4033 rizwank 1.1                 }
4034             
4035                           /* If no failure points, don't restore garbage.  And if
4036                              last match is real best match, don't restore second
4037                              best one. */
4038                           else if (best_regs_set && !best_match_p)
4039                             {
4040               	        restore_best_regs:
4041                               /* Restore best match.  It may happen that `dend ==
4042                                  end_match_1' while the restored d is in string2.
4043                                  For example, the pattern `x.*y.*z' against the
4044                                  strings `x-' and `y-z-', if the two strings are
4045                                  not consecutive in memory.  */
4046                               DEBUG_PRINT1 ("Restoring best registers.\n");
4047             
4048                               d = match_end;
4049                               dend = ((d >= string1 && d <= end1)
4050             		           ? end_match_1 : end_match_2);
4051             
4052             		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4053             		    {
4054 rizwank 1.1 		      regstart[mcnt] = best_regstart[mcnt];
4055             		      regend[mcnt] = best_regend[mcnt];
4056             		    }
4057                             }
4058                         } /* d != end_match_2 */
4059             
4060             	succeed_label:
4061                       DEBUG_PRINT1 ("Accepting match.\n");
4062             
4063                       /* If caller wants register contents data back, do it.  */
4064                       if (regs && !bufp->no_sub)
4065             	    {
4066                           /* Have the register data arrays been allocated?  */
4067                           if (bufp->regs_allocated == REGS_UNALLOCATED)
4068                             { /* No.  So allocate them with malloc.  We need one
4069                                  extra element beyond `num_regs' for the `-1' marker
4070                                  GNU code uses.  */
4071                               regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4072                               regs->start = TALLOC (regs->num_regs, regoff_t);
4073                               regs->end = TALLOC (regs->num_regs, regoff_t);
4074                               if (regs->start == NULL || regs->end == NULL)
4075 rizwank 1.1 		    {
4076             		      FREE_VARIABLES ();
4077             		      return -2;
4078             		    }
4079                               bufp->regs_allocated = REGS_REALLOCATE;
4080                             }
4081                           else if (bufp->regs_allocated == REGS_REALLOCATE)
4082                             { /* Yes.  If we need more elements than were already
4083                                  allocated, reallocate them.  If we need fewer, just
4084                                  leave it alone.  */
4085                               if (regs->num_regs < num_regs + 1)
4086                                 {
4087                                   regs->num_regs = num_regs + 1;
4088                                   RETALLOC (regs->start, regs->num_regs, regoff_t);
4089                                   RETALLOC (regs->end, regs->num_regs, regoff_t);
4090                                   if (regs->start == NULL || regs->end == NULL)
4091             			{
4092             			  FREE_VARIABLES ();
4093             			  return -2;
4094             			}
4095                                 }
4096 rizwank 1.1                 }
4097                           else
4098             		{
4099             		  /* These braces fend off a "empty body in an else-statement"
4100             		     warning under GCC when assert expands to nothing.  */
4101             		  assert (bufp->regs_allocated == REGS_FIXED);
4102             		}
4103             
4104                           /* Convert the pointer data in `regstart' and `regend' to
4105                              indices.  Register zero has to be set differently,
4106                              since we haven't kept track of any info for it.  */
4107                           if (regs->num_regs > 0)
4108                             {
4109                               regs->start[0] = pos;
4110                               regs->end[0] = (MATCHING_IN_FIRST_STRING
4111             				  ? ((regoff_t) (d - string1))
4112             			          : ((regoff_t) (d - string2 + size1)));
4113                             }
4114             
4115                           /* Go through the first `min (num_regs, regs->num_regs)'
4116                              registers, since that is all we initialized.  */
4117 rizwank 1.1 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4118             		   mcnt++)
4119             		{
4120                               if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4121                                 regs->start[mcnt] = regs->end[mcnt] = -1;
4122                               else
4123                                 {
4124             		      regs->start[mcnt]
4125             			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4126                                   regs->end[mcnt]
4127             			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4128                                 }
4129             		}
4130             
4131                           /* If the regs structure we return has more elements than
4132                              were in the pattern, set the extra elements to -1.  If
4133                              we (re)allocated the registers, this is the case,
4134                              because we always allocate enough to have at least one
4135                              -1 at the end.  */
4136                           for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4137                             regs->start[mcnt] = regs->end[mcnt] = -1;
4138 rizwank 1.1 	    } /* regs && !bufp->no_sub */
4139             
4140                       DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4141                                     nfailure_points_pushed, nfailure_points_popped,
4142                                     nfailure_points_pushed - nfailure_points_popped);
4143                       DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4144             
4145                       mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4146             			    ? string1
4147             			    : string2 - size1);
4148             
4149                       DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4150             
4151                       FREE_VARIABLES ();
4152                       return mcnt;
4153                     }
4154             
4155                   /* Otherwise match next pattern command.  */
4156                   switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4157             	{
4158                     /* Ignore these.  Used to ignore the n of succeed_n's which
4159 rizwank 1.1            currently have n == 0.  */
4160                     case no_op:
4161                       DEBUG_PRINT1 ("EXECUTING no_op.\n");
4162                       break;
4163             
4164             	case succeed:
4165                       DEBUG_PRINT1 ("EXECUTING succeed.\n");
4166             	  goto succeed_label;
4167             
4168                     /* Match the next n pattern characters exactly.  The following
4169                        byte in the pattern defines n, and the n bytes after that
4170                        are the characters to match.  */
4171             	case exactn:
4172             	  mcnt = *p++;
4173                       DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4174             
4175                       /* This is written out as an if-else so we don't waste time
4176                          testing `translate' inside the loop.  */
4177                       if (translate)
4178             	    {
4179             	      do
4180 rizwank 1.1 		{
4181             		  PREFETCH ();
4182             		  if ((unsigned char) translate[(unsigned char) *d++]
4183             		      != (unsigned char) *p++)
4184                                 goto fail;
4185             		}
4186             	      while (--mcnt);
4187             	    }
4188             	  else
4189             	    {
4190             	      do
4191             		{
4192             		  PREFETCH ();
4193             		  if (*d++ != (char) *p++) goto fail;
4194             		}
4195             	      while (--mcnt);
4196             	    }
4197             	  SET_REGS_MATCHED ();
4198                       break;
4199             
4200             
4201 rizwank 1.1         /* Match any character except possibly a newline or a null.  */
4202             	case anychar:
4203                       DEBUG_PRINT1 ("EXECUTING anychar.\n");
4204             
4205                       PREFETCH ();
4206             
4207                       if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4208                           || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4209             	    goto fail;
4210             
4211                       SET_REGS_MATCHED ();
4212                       DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4213                       d++;
4214             	  break;
4215             
4216             
4217             	case charset:
4218             	case charset_not:
4219             	  {
4220             	    register unsigned char c;
4221             	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
4222 rizwank 1.1 
4223                         DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4224             
4225             	    PREFETCH ();
4226             	    c = TRANSLATE (*d); /* The character to match.  */
4227             
4228                         /* Cast to `unsigned' instead of `unsigned char' in case the
4229                            bit list is a full 32 bytes long.  */
4230             	    if (c < (unsigned) (*p * BYTEWIDTH)
4231             		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4232             	      not = !not;
4233             
4234             	    p += 1 + *p;
4235             
4236             	    if (!not) goto fail;
4237             
4238             	    SET_REGS_MATCHED ();
4239                         d++;
4240             	    break;
4241             	  }
4242             
4243 rizwank 1.1 
4244                     /* The beginning of a group is represented by start_memory.
4245                        The arguments are the register number in the next byte, and the
4246                        number of groups inner to this one in the next.  The text
4247                        matched within the group is recorded (in the internal
4248                        registers data structure) under the register number.  */
4249                     case start_memory:
4250             	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4251             
4252                       /* Find out if this group can match the empty string.  */
4253             	  p1 = p;		/* To send to group_match_null_string_p.  */
4254             
4255                       if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4256                         REG_MATCH_NULL_STRING_P (reg_info[*p])
4257                           = group_match_null_string_p (&p1, pend, reg_info);
4258             
4259                       /* Save the position in the string where we were the last time
4260                          we were at this open-group operator in case the group is
4261                          operated upon by a repetition operator, e.g., with `(a*)*b'
4262                          against `ab'; then we want to ignore where we are now in
4263                          the string in case this attempt to match fails.  */
4264 rizwank 1.1           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4265                                          ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4266                                          : regstart[*p];
4267             	  DEBUG_PRINT2 ("  old_regstart: %d\n",
4268             			 POINTER_TO_OFFSET (old_regstart[*p]));
4269             
4270                       regstart[*p] = d;
4271             	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4272             
4273                       IS_ACTIVE (reg_info[*p]) = 1;
4274                       MATCHED_SOMETHING (reg_info[*p]) = 0;
4275             
4276             	  /* Clear this whenever we change the register activity status.  */
4277             	  set_regs_matched_done = 0;
4278             
4279                       /* This is the new highest active register.  */
4280                       highest_active_reg = *p;
4281             
4282                       /* If nothing was active before, this is the new lowest active
4283                          register.  */
4284                       if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4285 rizwank 1.1             lowest_active_reg = *p;
4286             
4287                       /* Move past the register number and inner group count.  */
4288                       p += 2;
4289             	  just_past_start_mem = p;
4290             
4291                       break;
4292             
4293             
4294                     /* The stop_memory opcode represents the end of a group.  Its
4295                        arguments are the same as start_memory's: the register
4296                        number, and the number of inner groups.  */
4297             	case stop_memory:
4298             	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4299             
4300                       /* We need to save the string position the last time we were at
4301                          this close-group operator in case the group is operated
4302                          upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4303                          against `aba'; then we want to ignore where we are now in
4304                          the string in case this attempt to match fails.  */
4305                       old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4306 rizwank 1.1                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
4307             			   : regend[*p];
4308             	  DEBUG_PRINT2 ("      old_regend: %d\n",
4309             			 POINTER_TO_OFFSET (old_regend[*p]));
4310             
4311                       regend[*p] = d;
4312             	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4313             
4314                       /* This register isn't active anymore.  */
4315                       IS_ACTIVE (reg_info[*p]) = 0;
4316             
4317             	  /* Clear this whenever we change the register activity status.  */
4318             	  set_regs_matched_done = 0;
4319             
4320                       /* If this was the only register active, nothing is active
4321                          anymore.  */
4322                       if (lowest_active_reg == highest_active_reg)
4323                         {
4324                           lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4325                           highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4326                         }
4327 rizwank 1.1           else
4328                         { /* We must scan for the new highest active register, since
4329                              it isn't necessarily one less than now: consider
4330                              (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4331                              new highest active register is 1.  */
4332                           unsigned char r = *p - 1;
4333                           while (r > 0 && !IS_ACTIVE (reg_info[r]))
4334                             r--;
4335             
4336                           /* If we end up at register zero, that means that we saved
4337                              the registers as the result of an `on_failure_jump', not
4338                              a `start_memory', and we jumped to past the innermost
4339                              `stop_memory'.  For example, in ((.)*) we save
4340                              registers 1 and 2 as a result of the *, but when we pop
4341                              back to the second ), we are at the stop_memory 1.
4342                              Thus, nothing is active.  */
4343             	      if (r == 0)
4344                             {
4345                               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4346                               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4347                             }
4348 rizwank 1.1               else
4349                             highest_active_reg = r;
4350                         }
4351             
4352                       /* If just failed to match something this time around with a
4353                          group that's operated on by a repetition operator, try to
4354                          force exit from the ``loop'', and restore the register
4355                          information for this group that we had before trying this
4356                          last match.  */
4357                       if ((!MATCHED_SOMETHING (reg_info[*p])
4358                            || just_past_start_mem == p - 1)
4359             	      && (p + 2) < pend)
4360                         {
4361                           boolean is_a_jump_n = false;
4362             
4363                           p1 = p + 2;
4364                           mcnt = 0;
4365                           switch ((re_opcode_t) *p1++)
4366                             {
4367                               case jump_n:
4368             		    is_a_jump_n = true;
4369 rizwank 1.1                   case pop_failure_jump:
4370             		  case maybe_pop_jump:
4371             		  case jump:
4372             		  case dummy_failure_jump:
4373                                 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4374             		    if (is_a_jump_n)
4375             		      p1 += 2;
4376                                 break;
4377             
4378                               default:
4379                                 /* do nothing */ ;
4380                             }
4381             	      p1 += mcnt;
4382             
4383                           /* If the next operation is a jump backwards in the pattern
4384             	         to an on_failure_jump right before the start_memory
4385                              corresponding to this stop_memory, exit from the loop
4386                              by forcing a failure after pushing on the stack the
4387                              on_failure_jump's jump in the pattern, and d.  */
4388                           if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4389                               && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4390 rizwank 1.1 		{
4391                               /* If this group ever matched anything, then restore
4392                                  what its registers were before trying this last
4393                                  failed match, e.g., with `(a*)*b' against `ab' for
4394                                  regstart[1], and, e.g., with `((a*)*(b*)*)*'
4395                                  against `aba' for regend[3].
4396             
4397                                  Also restore the registers for inner groups for,
4398                                  e.g., `((a*)(b*))*' against `aba' (register 3 would
4399                                  otherwise get trashed).  */
4400             
4401                               if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4402             		    {
4403             		      unsigned r;
4404             
4405                                   EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4406             
4407             		      /* Restore this and inner groups' (if any) registers.  */
4408                                   for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4409             			   r++)
4410                                     {
4411 rizwank 1.1                           regstart[r] = old_regstart[r];
4412             
4413                                       /* xx why this test?  */
4414                                       if (old_regend[r] >= regstart[r])
4415                                         regend[r] = old_regend[r];
4416                                     }
4417                                 }
4418             		  p1++;
4419                               EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4420                               PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4421             
4422                               goto fail;
4423                             }
4424                         }
4425             
4426                       /* Move past the register number and the inner group count.  */
4427                       p += 2;
4428                       break;
4429             
4430             
4431             	/* \<digit> has been turned into a `duplicate' command which is
4432 rizwank 1.1            followed by the numeric value of <digit> as the register number.  */
4433                     case duplicate:
4434             	  {
4435             	    register const char *d2, *dend2;
4436             	    int regno = *p++;   /* Get which register to match against.  */
4437             	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4438             
4439             	    /* Can't back reference a group which we've never matched.  */
4440                         if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4441                           goto fail;
4442             
4443                         /* Where in input to try to start matching.  */
4444                         d2 = regstart[regno];
4445             
4446                         /* Where to stop matching; if both the place to start and
4447                            the place to stop matching are in the same string, then
4448                            set to the place to stop, otherwise, for now have to use
4449                            the end of the first string.  */
4450             
4451                         dend2 = ((FIRST_STRING_P (regstart[regno])
4452             		      == FIRST_STRING_P (regend[regno]))
4453 rizwank 1.1 		     ? regend[regno] : end_match_1);
4454             	    for (;;)
4455             	      {
4456             		/* If necessary, advance to next segment in register
4457                                contents.  */
4458             		while (d2 == dend2)
4459             		  {
4460             		    if (dend2 == end_match_2) break;
4461             		    if (dend2 == regend[regno]) break;
4462             
4463                                 /* End of string1 => advance to string2. */
4464                                 d2 = string2;
4465                                 dend2 = regend[regno];
4466             		  }
4467             		/* At end of register contents => success */
4468             		if (d2 == dend2) break;
4469             
4470             		/* If necessary, advance to next segment in data.  */
4471             		PREFETCH ();
4472             
4473             		/* How many characters left in this segment to match.  */
4474 rizwank 1.1 		mcnt = dend - d;
4475             
4476             		/* Want how many consecutive characters we can match in
4477                                one shot, so, if necessary, adjust the count.  */
4478                             if (mcnt > dend2 - d2)
4479             		  mcnt = dend2 - d2;
4480             
4481             		/* Compare that many; failure if mismatch, else move
4482                                past them.  */
4483             		if (translate
4484                                 ? bcmp_translate (d, d2, mcnt, translate)
4485                                 : bcmp (d, d2, mcnt))
4486             		  goto fail;
4487             		d += mcnt, d2 += mcnt;
4488             
4489             		/* Do this because we've match some characters.  */
4490             		SET_REGS_MATCHED ();
4491             	      }
4492             	  }
4493             	  break;
4494             
4495 rizwank 1.1 
4496                     /* begline matches the empty string at the beginning of the string
4497                        (unless `not_bol' is set in `bufp'), and, if
4498                        `newline_anchor' is set, after newlines.  */
4499             	case begline:
4500                       DEBUG_PRINT1 ("EXECUTING begline.\n");
4501             
4502                       if (AT_STRINGS_BEG (d))
4503                         {
4504                           if (!bufp->not_bol) break;
4505                         }
4506                       else if (d[-1] == '\n' && bufp->newline_anchor)
4507                         {
4508                           break;
4509                         }
4510                       /* In all other cases, we fail.  */
4511                       goto fail;
4512             
4513             
4514                     /* endline is the dual of begline.  */
4515             	case endline:
4516 rizwank 1.1           DEBUG_PRINT1 ("EXECUTING endline.\n");
4517             
4518                       if (AT_STRINGS_END (d))
4519                         {
4520                           if (!bufp->not_eol) break;
4521                         }
4522             
4523                       /* We have to ``prefetch'' the next character.  */
4524                       else if ((d == end1 ? *string2 : *d) == '\n'
4525                                && bufp->newline_anchor)
4526                         {
4527                           break;
4528                         }
4529                       goto fail;
4530             
4531             
4532             	/* Match at the very beginning of the data.  */
4533                     case begbuf:
4534                       DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4535                       if (AT_STRINGS_BEG (d))
4536                         break;
4537 rizwank 1.1           goto fail;
4538             
4539             
4540             	/* Match at the very end of the data.  */
4541                     case endbuf:
4542                       DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4543             	  if (AT_STRINGS_END (d))
4544             	    break;
4545                       goto fail;
4546             
4547             
4548                     /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4549                        pushes NULL as the value for the string on the stack.  Then
4550                        `pop_failure_point' will keep the current value for the
4551                        string, instead of restoring it.  To see why, consider
4552                        matching `foo\nbar' against `.*\n'.  The .* matches the foo;
4553                        then the . fails against the \n.  But the next thing we want
4554                        to do is match the \n against the \n; if we restored the
4555                        string value, we would be back at the foo.
4556             
4557                        Because this is used only in specific cases, we don't need to
4558 rizwank 1.1            check all the things that `on_failure_jump' does, to make
4559                        sure the right things get saved on the stack.  Hence we don't
4560                        share its code.  The only reason to push anything on the
4561                        stack at all is that otherwise we would have to change
4562                        `anychar's code to do something besides goto fail in this
4563                        case; that seems worse than this.  */
4564                     case on_failure_keep_string_jump:
4565                       DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4566             
4567                       EXTRACT_NUMBER_AND_INCR (mcnt, p);
4568             #ifdef _LIBC
4569                       DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4570             #else
4571                       DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4572             #endif
4573             
4574                       PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4575                       break;
4576             
4577             
4578             	/* Uses of on_failure_jump:
4579 rizwank 1.1 
4580                        Each alternative starts with an on_failure_jump that points
4581                        to the beginning of the next alternative.  Each alternative
4582                        except the last ends with a jump that in effect jumps past
4583                        the rest of the alternatives.  (They really jump to the
4584                        ending jump of the following alternative, because tensioning
4585                        these jumps is a hassle.)
4586             
4587                        Repeats start with an on_failure_jump that points past both
4588                        the repetition text and either the following jump or
4589                        pop_failure_jump back to this on_failure_jump.  */
4590             	case on_failure_jump:
4591                     on_failure:
4592                       DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4593             
4594                       EXTRACT_NUMBER_AND_INCR (mcnt, p);
4595             #ifdef _LIBC
4596                       DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4597             #else
4598                       DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4599             #endif
4600 rizwank 1.1 
4601                       /* If this on_failure_jump comes right before a group (i.e.,
4602                          the original * applied to a group), save the information
4603                          for that group and all inner ones, so that if we fail back
4604                          to this point, the group's information will be correct.
4605                          For example, in \(a*\)*\1, we need the preceding group,
4606                          and in \(zz\(a*\)b*\)\2, we need the inner group.  */
4607             
4608                       /* We can't use `p' to check ahead because we push
4609                          a failure point to `p + mcnt' after we do this.  */
4610                       p1 = p;
4611             
4612                       /* We need to skip no_op's before we look for the
4613                          start_memory in case this on_failure_jump is happening as
4614                          the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4615                          against aba.  */
4616                       while (p1 < pend && (re_opcode_t) *p1 == no_op)
4617                         p1++;
4618             
4619                       if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4620                         {
4621 rizwank 1.1               /* We have a new highest active register now.  This will
4622                              get reset at the start_memory we are about to get to,
4623                              but we will have saved all the registers relevant to
4624                              this repetition op, as described above.  */
4625                           highest_active_reg = *(p1 + 1) + *(p1 + 2);
4626                           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4627                             lowest_active_reg = *(p1 + 1);
4628                         }
4629             
4630                       DEBUG_PRINT1 (":\n");
4631                       PUSH_FAILURE_POINT (p + mcnt, d, -2);
4632                       break;
4633             
4634             
4635                     /* A smart repeat ends with `maybe_pop_jump'.
4636             	   We change it to either `pop_failure_jump' or `jump'.  */
4637                     case maybe_pop_jump:
4638                       EXTRACT_NUMBER_AND_INCR (mcnt, p);
4639                       DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4640                       {
4641             	    register unsigned char *p2 = p;
4642 rizwank 1.1 
4643                         /* Compare the beginning of the repeat with what in the
4644                            pattern follows its end. If we can establish that there
4645                            is nothing that they would both match, i.e., that we
4646                            would have to backtrack because of (as in, e.g., `a*a')
4647                            then we can change to pop_failure_jump, because we'll
4648                            never have to backtrack.
4649             
4650                            This is not true in the case of alternatives: in
4651                            `(a|ab)*' we do need to backtrack to the `ab' alternative
4652                            (e.g., if the string was `ab').  But instead of trying to
4653                            detect that here, the alternative has put on a dummy
4654                            failure point which is what we will end up popping.  */
4655             
4656             	    /* Skip over open/close-group commands.
4657             	       If what follows this loop is a ...+ construct,
4658             	       look at what begins its body, since we will have to
4659             	       match at least one of that.  */
4660             	    while (1)
4661             	      {
4662             		if (p2 + 2 < pend
4663 rizwank 1.1 		    && ((re_opcode_t) *p2 == stop_memory
4664             			|| (re_opcode_t) *p2 == start_memory))
4665             		  p2 += 3;
4666             		else if (p2 + 6 < pend
4667             			 && (re_opcode_t) *p2 == dummy_failure_jump)
4668             		  p2 += 6;
4669             		else
4670             		  break;
4671             	      }
4672             
4673             	    p1 = p + mcnt;
4674             	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4675             	       to the `maybe_finalize_jump' of this case.  Examine what
4676             	       follows.  */
4677             
4678                         /* If we're at the end of the pattern, we can change.  */
4679                         if (p2 == pend)
4680             	      {
4681             		/* Consider what happens when matching ":\(.*\)"
4682             		   against ":/".  I don't really understand this code
4683             		   yet.  */
4684 rizwank 1.1   	        p[-3] = (unsigned char) pop_failure_jump;
4685                             DEBUG_PRINT1
4686                               ("  End of pattern: change to `pop_failure_jump'.\n");
4687                           }
4688             
4689                         else if ((re_opcode_t) *p2 == exactn
4690             		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4691             	      {
4692             		register unsigned char c
4693                               = *p2 == (unsigned char) endline ? '\n' : p2[2];
4694             
4695                             if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4696                               {
4697               		    p[-3] = (unsigned char) pop_failure_jump;
4698                                 DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4699                                               c, p1[5]);
4700                               }
4701             
4702             		else if ((re_opcode_t) p1[3] == charset
4703             			 || (re_opcode_t) p1[3] == charset_not)
4704             		  {
4705 rizwank 1.1 		    int not = (re_opcode_t) p1[3] == charset_not;
4706             
4707             		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4708             			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4709             		      not = !not;
4710             
4711                                 /* `not' is equal to 1 if c would match, which means
4712                                     that we can't change to pop_failure_jump.  */
4713             		    if (!not)
4714                                   {
4715               		        p[-3] = (unsigned char) pop_failure_jump;
4716                                     DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4717                                   }
4718             		  }
4719             	      }
4720                         else if ((re_opcode_t) *p2 == charset)
4721             	      {
4722             #ifdef DEBUG
4723             		register unsigned char c
4724                               = *p2 == (unsigned char) endline ? '\n' : p2[2];
4725             #endif
4726 rizwank 1.1 
4727             #if 0
4728                             if ((re_opcode_t) p1[3] == exactn
4729             		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4730             			  && (p2[2 + p1[5] / BYTEWIDTH]
4731             			      & (1 << (p1[5] % BYTEWIDTH)))))
4732             #else
4733                             if ((re_opcode_t) p1[3] == exactn
4734             		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4735             			  && (p2[2 + p1[4] / BYTEWIDTH]
4736             			      & (1 << (p1[4] % BYTEWIDTH)))))
4737             #endif
4738                               {
4739               		    p[-3] = (unsigned char) pop_failure_jump;
4740                                 DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4741                                               c, p1[5]);
4742                               }
4743             
4744             		else if ((re_opcode_t) p1[3] == charset_not)
4745             		  {
4746             		    int idx;
4747 rizwank 1.1 		    /* We win if the charset_not inside the loop
4748             		       lists every character listed in the charset after.  */
4749             		    for (idx = 0; idx < (int) p2[1]; idx++)
4750             		      if (! (p2[2 + idx] == 0
4751             			     || (idx < (int) p1[4]
4752             				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4753             			break;
4754             
4755             		    if (idx == p2[1])
4756                                   {
4757               		        p[-3] = (unsigned char) pop_failure_jump;
4758                                     DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4759                                   }
4760             		  }
4761             		else if ((re_opcode_t) p1[3] == charset)
4762             		  {
4763             		    int idx;
4764             		    /* We win if the charset inside the loop
4765             		       has no overlap with the one after the loop.  */
4766             		    for (idx = 0;
4767             			 idx < (int) p2[1] && idx < (int) p1[4];
4768 rizwank 1.1 			 idx++)
4769             		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
4770             			break;
4771             
4772             		    if (idx == p2[1] || idx == p1[4])
4773                                   {
4774               		        p[-3] = (unsigned char) pop_failure_jump;
4775                                     DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4776                                   }
4777             		  }
4778             	      }
4779             	  }
4780             	  p -= 2;		/* Point at relative address again.  */
4781             	  if ((re_opcode_t) p[-1] != pop_failure_jump)
4782             	    {
4783             	      p[-1] = (unsigned char) jump;
4784                           DEBUG_PRINT1 ("  Match => jump.\n");
4785             	      goto unconditional_jump;
4786             	    }
4787                     /* Note fall through.  */
4788             
4789 rizwank 1.1 
4790             	/* The end of a simple repeat has a pop_failure_jump back to
4791                        its matching on_failure_jump, where the latter will push a
4792                        failure point.  The pop_failure_jump takes off failure
4793                        points put on by this pop_failure_jump's matching
4794                        on_failure_jump; we got through the pattern to here from the
4795                        matching on_failure_jump, so didn't fail.  */
4796                     case pop_failure_jump:
4797                       {
4798                         /* We need to pass separate storage for the lowest and
4799                            highest registers, even though we don't care about the
4800                            actual values.  Otherwise, we will restore only one
4801                            register from the stack, since lowest will == highest in
4802                            `pop_failure_point'.  */
4803                         active_reg_t dummy_low_reg, dummy_high_reg;
4804                         unsigned char *pdummy;
4805                         const char *sdummy;
4806             
4807                         DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4808                         POP_FAILURE_POINT (sdummy, pdummy,
4809                                            dummy_low_reg, dummy_high_reg,
4810 rizwank 1.1                                reg_dummy, reg_dummy, reg_info_dummy);
4811                       }
4812             	  /* Note fall through.  */
4813             
4814             	unconditional_jump:
4815             #ifdef _LIBC
4816             	  DEBUG_PRINT2 ("\n%p: ", p);
4817             #else
4818             	  DEBUG_PRINT2 ("\n0x%x: ", p);
4819             #endif
4820                       /* Note fall through.  */
4821             
4822                     /* Unconditionally jump (without popping any failure points).  */
4823                     case jump:
4824             	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
4825                       DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4826             	  p += mcnt;				/* Do the jump.  */
4827             #ifdef _LIBC
4828                       DEBUG_PRINT2 ("(to %p).\n", p);
4829             #else
4830                       DEBUG_PRINT2 ("(to 0x%x).\n", p);
4831 rizwank 1.1 #endif
4832             	  break;
4833             
4834             
4835                     /* We need this opcode so we can detect where alternatives end
4836                        in `group_match_null_string_p' et al.  */
4837                     case jump_past_alt:
4838                       DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4839                       goto unconditional_jump;
4840             
4841             
4842                     /* Normally, the on_failure_jump pushes a failure point, which
4843                        then gets popped at pop_failure_jump.  We will end up at
4844                        pop_failure_jump, also, and with a pattern of, say, `a+', we
4845                        are skipping over the on_failure_jump, so we have to push
4846                        something meaningless for pop_failure_jump to pop.  */
4847                     case dummy_failure_jump:
4848                       DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4849                       /* It doesn't matter what we push for the string here.  What
4850                          the code at `fail' tests is the value for the pattern.  */
4851                       PUSH_FAILURE_POINT (0, 0, -2);
4852 rizwank 1.1           goto unconditional_jump;
4853             
4854             
4855                     /* At the end of an alternative, we need to push a dummy failure
4856                        point in case we are followed by a `pop_failure_jump', because
4857                        we don't want the failure point for the alternative to be
4858                        popped.  For example, matching `(a|ab)*' against `aab'
4859                        requires that we match the `ab' alternative.  */
4860                     case push_dummy_failure:
4861                       DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4862                       /* See comments just above at `dummy_failure_jump' about the
4863                          two zeroes.  */
4864                       PUSH_FAILURE_POINT (0, 0, -2);
4865                       break;
4866             
4867                     /* Have to succeed matching what follows at least n times.
4868                        After that, handle like `on_failure_jump'.  */
4869                     case succeed_n:
4870                       EXTRACT_NUMBER (mcnt, p + 2);
4871                       DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4872             
4873 rizwank 1.1           assert (mcnt >= 0);
4874                       /* Originally, this is how many times we HAVE to succeed.  */
4875                       if (mcnt > 0)
4876                         {
4877                            mcnt--;
4878             	       p += 2;
4879                            STORE_NUMBER_AND_INCR (p, mcnt);
4880             #ifdef _LIBC
4881                            DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
4882             #else
4883                            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
4884             #endif
4885                         }
4886             	  else if (mcnt == 0)
4887                         {
4888             #ifdef _LIBC
4889                           DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
4890             #else
4891                           DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
4892             #endif
4893             	      p[2] = (unsigned char) no_op;
4894 rizwank 1.1               p[3] = (unsigned char) no_op;
4895                           goto on_failure;
4896                         }
4897                       break;
4898             
4899                     case jump_n:
4900                       EXTRACT_NUMBER (mcnt, p + 2);
4901                       DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4902             
4903                       /* Originally, this is how many times we CAN jump.  */
4904                       if (mcnt)
4905                         {
4906                            mcnt--;
4907                            STORE_NUMBER (p + 2, mcnt);
4908             #ifdef _LIBC
4909                            DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
4910             #else
4911                            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
4912             #endif
4913             	       goto unconditional_jump;
4914                         }
4915 rizwank 1.1           /* If don't have to jump any more, skip over the rest of command.  */
4916             	  else
4917             	    p += 4;
4918                       break;
4919             
4920             	case set_number_at:
4921             	  {
4922                         DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4923             
4924                         EXTRACT_NUMBER_AND_INCR (mcnt, p);
4925                         p1 = p + mcnt;
4926                         EXTRACT_NUMBER_AND_INCR (mcnt, p);
4927             #ifdef _LIBC
4928                         DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
4929             #else
4930                         DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
4931             #endif
4932             	    STORE_NUMBER (p1, mcnt);
4933                         break;
4934                       }
4935             
4936 rizwank 1.1 #if 0
4937             	/* The DEC Alpha C compiler 3.x generates incorrect code for the
4938             	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
4939             	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
4940             	   macro and introducing temporary variables works around the bug.  */
4941             
4942             	case wordbound:
4943             	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4944             	  if (AT_WORD_BOUNDARY (d))
4945             	    break;
4946             	  goto fail;
4947             
4948             	case notwordbound:
4949             	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4950             	  if (AT_WORD_BOUNDARY (d))
4951             	    goto fail;
4952             	  break;
4953             #else
4954             	case wordbound:
4955             	{
4956             	  boolean prevchar, thischar;
4957 rizwank 1.1 
4958             	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4959             	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4960             	    break;
4961             
4962             	  prevchar = WORDCHAR_P (d - 1);
4963             	  thischar = WORDCHAR_P (d);
4964             	  if (prevchar != thischar)
4965             	    break;
4966             	  goto fail;
4967             	}
4968             
4969                   case notwordbound:
4970             	{
4971             	  boolean prevchar, thischar;
4972             
4973             	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4974             	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4975             	    goto fail;
4976             
4977             	  prevchar = WORDCHAR_P (d - 1);
4978 rizwank 1.1 	  thischar = WORDCHAR_P (d);
4979             	  if (prevchar != thischar)
4980             	    goto fail;
4981             	  break;
4982             	}
4983             #endif
4984             
4985             	case wordbeg:
4986                       DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4987             	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4988             	    break;
4989                       goto fail;
4990             
4991             	case wordend:
4992                       DEBUG_PRINT1 ("EXECUTING wordend.\n");
4993             	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4994                           && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4995             	    break;
4996                       goto fail;
4997             
4998             #ifdef emacs
4999 rizwank 1.1   	case before_dot:
5000                       DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5001              	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5002               	    goto fail;
5003               	  break;
5004             
5005               	case at_dot:
5006                       DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5007              	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
5008               	    goto fail;
5009               	  break;
5010             
5011               	case after_dot:
5012                       DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5013                       if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5014               	    goto fail;
5015               	  break;
5016             
5017             	case syntaxspec:
5018                       DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5019             	  mcnt = *p++;
5020 rizwank 1.1 	  goto matchsyntax;
5021             
5022                     case wordchar:
5023                       DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5024             	  mcnt = (int) Sword;
5025                     matchsyntax:
5026             	  PREFETCH ();
5027             	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5028             	  d++;
5029             	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5030             	    goto fail;
5031                       SET_REGS_MATCHED ();
5032             	  break;
5033             
5034             	case notsyntaxspec:
5035                       DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5036             	  mcnt = *p++;
5037             	  goto matchnotsyntax;
5038             
5039                     case notwordchar:
5040                       DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5041 rizwank 1.1 	  mcnt = (int) Sword;
5042                     matchnotsyntax:
5043             	  PREFETCH ();
5044             	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5045             	  d++;
5046             	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5047             	    goto fail;
5048             	  SET_REGS_MATCHED ();
5049                       break;
5050             
5051             #else /* not emacs */
5052             	case wordchar:
5053                       DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5054             	  PREFETCH ();
5055                       if (!WORDCHAR_P (d))
5056                         goto fail;
5057             	  SET_REGS_MATCHED ();
5058                       d++;
5059             	  break;
5060             
5061             	case notwordchar:
5062 rizwank 1.1           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5063             	  PREFETCH ();
5064             	  if (WORDCHAR_P (d))
5065                         goto fail;
5066                       SET_REGS_MATCHED ();
5067                       d++;
5068             	  break;
5069             #endif /* not emacs */
5070             
5071                     default:
5072                       abort ();
5073             	}
5074                   continue;  /* Successfully executed one pattern command; keep going.  */
5075             
5076             
5077                 /* We goto here if a matching operation fails. */
5078                 fail:
5079                   if (!FAIL_STACK_EMPTY ())
5080             	{ /* A restart point is known.  Restore to that state.  */
5081                       DEBUG_PRINT1 ("\nFAIL:\n");
5082                       POP_FAILURE_POINT (d, p,
5083 rizwank 1.1                              lowest_active_reg, highest_active_reg,
5084                                          regstart, regend, reg_info);
5085             
5086                       /* If this failure point is a dummy, try the next one.  */
5087                       if (!p)
5088             	    goto fail;
5089             
5090                       /* If we failed to the end of the pattern, don't examine *p.  */
5091             	  assert (p <= pend);
5092                       if (p < pend)
5093                         {
5094                           boolean is_a_jump_n = false;
5095             
5096                           /* If failed to a backwards jump that's part of a repetition
5097                              loop, need to pop this failure point and use the next one.  */
5098                           switch ((re_opcode_t) *p)
5099                             {
5100                             case jump_n:
5101                               is_a_jump_n = true;
5102                             case maybe_pop_jump:
5103                             case pop_failure_jump:
5104 rizwank 1.1                 case jump:
5105                               p1 = p + 1;
5106                               EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5107                               p1 += mcnt;
5108             
5109                               if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5110                                   || (!is_a_jump_n
5111                                       && (re_opcode_t) *p1 == on_failure_jump))
5112                                 goto fail;
5113                               break;
5114                             default:
5115                               /* do nothing */ ;
5116                             }
5117                         }
5118             
5119                       if (d >= string1 && d <= end1)
5120             	    dend = end_match_1;
5121                     }
5122                   else
5123                     break;   /* Matching at this starting point really fails.  */
5124                 } /* for (;;) */
5125 rizwank 1.1 
5126               if (best_regs_set)
5127                 goto restore_best_regs;
5128             
5129               FREE_VARIABLES ();
5130             
5131               return -1;         			/* Failure to match.  */
5132             } /* re_match_2 */
5133             
5134             /* Subroutine definitions for re_match_2.  */
5135             
5136             
5137             /* We are passed P pointing to a register number after a start_memory.
5138             
5139                Return true if the pattern up to the corresponding stop_memory can
5140                match the empty string, and false otherwise.
5141             
5142                If we find the matching stop_memory, sets P to point to one past its number.
5143                Otherwise, sets P to an undefined byte less than or equal to END.
5144             
5145                We don't handle duplicates properly (yet).  */
5146 rizwank 1.1 
5147             static boolean
5148             group_match_null_string_p (p, end, reg_info)
5149                 unsigned char **p, *end;
5150                 register_info_type *reg_info;
5151             {
5152               int mcnt;
5153               /* Point to after the args to the start_memory.  */
5154               unsigned char *p1 = *p + 2;
5155             
5156               while (p1 < end)
5157                 {
5158                   /* Skip over opcodes that can match nothing, and return true or
5159             	 false, as appropriate, when we get to one that can't, or to the
5160                      matching stop_memory.  */
5161             
5162                   switch ((re_opcode_t) *p1)
5163                     {
5164                     /* Could be either a loop or a series of alternatives.  */
5165                     case on_failure_jump:
5166                       p1++;
5167 rizwank 1.1           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5168             
5169                       /* If the next operation is not a jump backwards in the
5170             	     pattern.  */
5171             
5172             	  if (mcnt >= 0)
5173             	    {
5174                           /* Go through the on_failure_jumps of the alternatives,
5175                              seeing if any of the alternatives cannot match nothing.
5176                              The last alternative starts with only a jump,
5177                              whereas the rest start with on_failure_jump and end
5178                              with a jump, e.g., here is the pattern for `a|b|c':
5179             
5180                              /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5181                              /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5182                              /exactn/1/c
5183             
5184                              So, we have to first go through the first (n-1)
5185                              alternatives and then deal with the last one separately.  */
5186             
5187             
5188 rizwank 1.1               /* Deal with the first (n-1) alternatives, which start
5189                              with an on_failure_jump (see above) that jumps to right
5190                              past a jump_past_alt.  */
5191             
5192                           while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5193                             {
5194                               /* `mcnt' holds how many bytes long the alternative
5195                                  is, including the ending `jump_past_alt' and
5196                                  its number.  */
5197             
5198                               if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5199             				                      reg_info))
5200                                 return false;
5201             
5202                               /* Move to right after this alternative, including the
5203             		     jump_past_alt.  */
5204                               p1 += mcnt;
5205             
5206                               /* Break if it's the beginning of an n-th alternative
5207                                  that doesn't begin with an on_failure_jump.  */
5208                               if ((re_opcode_t) *p1 != on_failure_jump)
5209 rizwank 1.1                     break;
5210             
5211             		  /* Still have to check that it's not an n-th
5212             		     alternative that starts with an on_failure_jump.  */
5213             		  p1++;
5214                               EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5215                               if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5216                                 {
5217             		      /* Get to the beginning of the n-th alternative.  */
5218                                   p1 -= 3;
5219                                   break;
5220                                 }
5221                             }
5222             
5223                           /* Deal with the last alternative: go back and get number
5224                              of the `jump_past_alt' just before it.  `mcnt' contains
5225                              the length of the alternative.  */
5226                           EXTRACT_NUMBER (mcnt, p1 - 2);
5227             
5228                           if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5229                             return false;
5230 rizwank 1.1 
5231                           p1 += mcnt;	/* Get past the n-th alternative.  */
5232                         } /* if mcnt > 0 */
5233                       break;
5234             
5235             
5236                     case stop_memory:
5237             	  assert (p1[1] == **p);
5238                       *p = p1 + 2;
5239                       return true;
5240             
5241             
5242                     default:
5243                       if (!common_op_match_null_string_p (&p1, end, reg_info))
5244                         return false;
5245                     }
5246                 } /* while p1 < end */
5247             
5248               return false;
5249             } /* group_match_null_string_p */
5250             
5251 rizwank 1.1 
5252             /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5253                It expects P to be the first byte of a single alternative and END one
5254                byte past the last. The alternative can contain groups.  */
5255             
5256             static boolean
5257             alt_match_null_string_p (p, end, reg_info)
5258                 unsigned char *p, *end;
5259                 register_info_type *reg_info;
5260             {
5261               int mcnt;
5262               unsigned char *p1 = p;
5263             
5264               while (p1 < end)
5265                 {
5266                   /* Skip over opcodes that can match nothing, and break when we get
5267                      to one that can't.  */
5268             
5269                   switch ((re_opcode_t) *p1)
5270                     {
5271             	/* It's a loop.  */
5272 rizwank 1.1         case on_failure_jump:
5273                       p1++;
5274                       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5275                       p1 += mcnt;
5276                       break;
5277             
5278             	default:
5279                       if (!common_op_match_null_string_p (&p1, end, reg_info))
5280                         return false;
5281                     }
5282                 }  /* while p1 < end */
5283             
5284               return true;
5285             } /* alt_match_null_string_p */
5286             
5287             
5288             /* Deals with the ops common to group_match_null_string_p and
5289                alt_match_null_string_p.
5290             
5291                Sets P to one after the op and its arguments, if any.  */
5292             
5293 rizwank 1.1 static boolean
5294             common_op_match_null_string_p (p, end, reg_info)
5295                 unsigned char **p, *end;
5296                 register_info_type *reg_info;
5297             {
5298               int mcnt;
5299               boolean ret;
5300               int reg_no;
5301               unsigned char *p1 = *p;
5302             
5303               switch ((re_opcode_t) *p1++)
5304                 {
5305                 case no_op:
5306                 case begline:
5307                 case endline:
5308                 case begbuf:
5309                 case endbuf:
5310                 case wordbeg:
5311                 case wordend:
5312                 case wordbound:
5313                 case notwordbound:
5314 rizwank 1.1 #ifdef emacs
5315                 case before_dot:
5316                 case at_dot:
5317                 case after_dot:
5318             #endif
5319                   break;
5320             
5321                 case start_memory:
5322                   reg_no = *p1;
5323                   assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5324                   ret = group_match_null_string_p (&p1, end, reg_info);
5325             
5326                   /* Have to set this here in case we're checking a group which
5327                      contains a group and a back reference to it.  */
5328             
5329                   if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5330                     REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5331             
5332                   if (!ret)
5333                     return false;
5334                   break;
5335 rizwank 1.1 
5336                 /* If this is an optimized succeed_n for zero times, make the jump.  */
5337                 case jump:
5338                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5339                   if (mcnt >= 0)
5340                     p1 += mcnt;
5341                   else
5342                     return false;
5343                   break;
5344             
5345                 case succeed_n:
5346                   /* Get to the number of times to succeed.  */
5347                   p1 += 2;
5348                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5349             
5350                   if (mcnt == 0)
5351                     {
5352                       p1 -= 4;
5353                       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5354                       p1 += mcnt;
5355                     }
5356 rizwank 1.1       else
5357                     return false;
5358                   break;
5359             
5360                 case duplicate:
5361                   if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5362                     return false;
5363                   break;
5364             
5365                 case set_number_at:
5366                   p1 += 4;
5367             
5368                 default:
5369                   /* All other opcodes mean we cannot match the empty string.  */
5370                   return false;
5371               }
5372             
5373               *p = p1;
5374               return true;
5375             } /* common_op_match_null_string_p */
5376             
5377 rizwank 1.1 
5378             /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5379                bytes; nonzero otherwise.  */
5380             
5381             static int
5382             bcmp_translate (s1, s2, len, translate)
5383                  const char *s1, *s2;
5384                  register int len;
5385                  RE_TRANSLATE_TYPE translate;
5386             {
5387               register const unsigned char *p1 = (const unsigned char *) s1;
5388               register const unsigned char *p2 = (const unsigned char *) s2;
5389               while (len)
5390                 {
5391                   if (translate[*p1++] != translate[*p2++]) return 1;
5392                   len--;
5393                 }
5394               return 0;
5395             }
5396             
5397             /* Entry points for GNU code.  */
5398 rizwank 1.1 
5399             /* re_compile_pattern is the GNU regular expression compiler: it
5400                compiles PATTERN (of length SIZE) and puts the result in BUFP.
5401                Returns 0 if the pattern was valid, otherwise an error string.
5402             
5403                Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5404                are set in BUFP on entry.
5405             
5406                We call regex_compile to do the actual compilation.  */
5407             
5408             const char *
5409             re_compile_pattern (pattern, length, bufp)
5410                  const char *pattern;
5411                  size_t length;
5412                  struct re_pattern_buffer *bufp;
5413             {
5414               reg_errcode_t ret;
5415             
5416               /* GNU code is written to assume at least RE_NREGS registers will be set
5417                  (and at least one extra will be -1).  */
5418               bufp->regs_allocated = REGS_UNALLOCATED;
5419 rizwank 1.1 
5420               /* And GNU code determines whether or not to get register information
5421                  by passing null for the REGS argument to re_match, etc., not by
5422                  setting no_sub.  */
5423               bufp->no_sub = 0;
5424             
5425               /* Match anchors at newline.  */
5426               bufp->newline_anchor = 1;
5427             
5428               ret = regex_compile (pattern, length, re_syntax_options, bufp);
5429             
5430               if (!ret)
5431                 return NULL;
5432               return gettext (re_error_msgid[(int) ret]);
5433             }
5434             
5435             /* Entry points compatible with 4.2 BSD regex library.  We don't define
5436                them unless specifically requested.  */
5437             
5438             #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5439             
5440 rizwank 1.1 /* BSD has one and only one pattern buffer.  */
5441             static struct re_pattern_buffer re_comp_buf;
5442             
5443             char *
5444             #ifdef _LIBC
5445             /* Make these definitions weak in libc, so POSIX programs can redefine
5446                these names if they don't use our functions, and still use
5447                regcomp/regexec below without link errors.  */
5448             weak_function
5449             #endif
5450             re_comp (s)
5451                 const char *s;
5452             {
5453               reg_errcode_t ret;
5454             
5455               if (!s)
5456                 {
5457                   if (!re_comp_buf.buffer)
5458             	return gettext ("No previous regular expression");
5459                   return 0;
5460                 }
5461 rizwank 1.1 
5462               if (!re_comp_buf.buffer)
5463                 {
5464                   re_comp_buf.buffer = (unsigned char *) malloc (200);
5465                   if (re_comp_buf.buffer == NULL)
5466                     return gettext (re_error_msgid[(int) REG_ESPACE]);
5467                   re_comp_buf.allocated = 200;
5468             
5469                   re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5470                   if (re_comp_buf.fastmap == NULL)
5471             	return gettext (re_error_msgid[(int) REG_ESPACE]);
5472                 }
5473             
5474               /* Since `re_exec' always passes NULL for the `regs' argument, we
5475                  don't need to initialize the pattern buffer fields which affect it.  */
5476             
5477               /* Match anchors at newlines.  */
5478               re_comp_buf.newline_anchor = 1;
5479             
5480               ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5481             
5482 rizwank 1.1   if (!ret)
5483                 return NULL;
5484             
5485               /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
5486               return (char *) gettext (re_error_msgid[(int) ret]);
5487             }
5488             
5489             
5490             int
5491             #ifdef _LIBC
5492             weak_function
5493             #endif
5494             re_exec (s)
5495                 const char *s;
5496             {
5497               const int len = strlen (s);
5498               return
5499                 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5500             }
5501             
5502             #endif /* _REGEX_RE_COMP */
5503 rizwank 1.1 
5504             /* POSIX.2 functions.  Don't define these for Emacs.  */
5505             
5506             #ifndef emacs
5507             
5508             /* regcomp takes a regular expression as a string and compiles it.
5509             
5510                PREG is a regex_t *.  We do not expect any fields to be initialized,
5511                since POSIX says we shouldn't.  Thus, we set
5512             
5513                  `buffer' to the compiled pattern;
5514                  `used' to the length of the compiled pattern;
5515                  `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5516                    REG_EXTENDED bit in CFLAGS is set; otherwise, to
5517                    RE_SYNTAX_POSIX_BASIC;
5518                  `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5519                  `fastmap' and `fastmap_accurate' to zero;
5520                  `re_nsub' to the number of subexpressions in PATTERN.
5521             
5522                PATTERN is the address of the pattern string.
5523             
5524 rizwank 1.1    CFLAGS is a series of bits which affect compilation.
5525             
5526                  If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5527                  use POSIX basic syntax.
5528             
5529                  If REG_NEWLINE is set, then . and [^...] don't match newline.
5530                  Also, regexec will try a match beginning after every newline.
5531             
5532                  If REG_ICASE is set, then we considers upper- and lowercase
5533                  versions of letters to be equivalent when matching.
5534             
5535                  If REG_NOSUB is set, then when PREG is passed to regexec, that
5536                  routine will report only success or failure, and nothing about the
5537                  registers.
5538             
5539                It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
5540                the return codes and their meanings.)  */
5541             
5542             #ifdef __APPLE__
5543             __private_extern__
5544             #endif
5545 rizwank 1.1 int
5546             regcomp (preg, pattern, cflags)
5547                 regex_t *preg;
5548                 const char *pattern;
5549                 int cflags;
5550             {
5551               reg_errcode_t ret;
5552               reg_syntax_t syntax
5553                 = (cflags & REG_EXTENDED) ?
5554                   RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5555             
5556               /* regex_compile will allocate the space for the compiled pattern.  */
5557               preg->buffer = 0;
5558               preg->allocated = 0;
5559               preg->used = 0;
5560             
5561               /* Don't bother to use a fastmap when searching.  This simplifies the
5562                  REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5563                  characters after newlines into the fastmap.  This way, we just try
5564                  every character.  */
5565               preg->fastmap = 0;
5566 rizwank 1.1 
5567               if (cflags & REG_ICASE)
5568                 {
5569                   unsigned i;
5570             
5571                   preg->translate
5572             	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5573             				      * sizeof (*(RE_TRANSLATE_TYPE)0));
5574                   if (preg->translate == NULL)
5575                     return (int) REG_ESPACE;
5576             
5577                   /* Map uppercase characters to corresponding lowercase ones.  */
5578                   for (i = 0; i < CHAR_SET_SIZE; i++)
5579                     preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5580                 }
5581               else
5582                 preg->translate = NULL;
5583             
5584               /* If REG_NEWLINE is set, newlines are treated differently.  */
5585               if (cflags & REG_NEWLINE)
5586                 { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
5587 rizwank 1.1       syntax &= ~RE_DOT_NEWLINE;
5588                   syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5589                   /* It also changes the matching behavior.  */
5590                   preg->newline_anchor = 1;
5591                 }
5592               else
5593                 preg->newline_anchor = 0;
5594             
5595               preg->no_sub = !!(cflags & REG_NOSUB);
5596             
5597               /* POSIX says a null character in the pattern terminates it, so we
5598                  can use strlen here in compiling the pattern.  */
5599               ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5600             
5601               /* POSIX doesn't distinguish between an unmatched open-group and an
5602                  unmatched close-group: both are REG_EPAREN.  */
5603               if (ret == REG_ERPAREN) ret = REG_EPAREN;
5604             
5605               return (int) ret;
5606             }
5607             
5608 rizwank 1.1 
5609             /* regexec searches for a given pattern, specified by PREG, in the
5610                string STRING.
5611             
5612                If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5613                `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
5614                least NMATCH elements, and we set them to the offsets of the
5615                corresponding matched substrings.
5616             
5617                EFLAGS specifies `execution flags' which affect matching: if
5618                REG_NOTBOL is set, then ^ does not match at the beginning of the
5619                string; if REG_NOTEOL is set, then $ does not match at the end.
5620             
5621                We return 0 if we find a match and REG_NOMATCH if not.  */
5622             
5623             #ifdef __APPLE__
5624             __private_extern__
5625             #endif
5626             int
5627             regexec (preg, string, nmatch, pmatch, eflags)
5628                 const regex_t *preg;
5629 rizwank 1.1     const char *string;
5630                 size_t nmatch;
5631                 regmatch_t pmatch[];
5632                 int eflags;
5633             {
5634               int ret;
5635               struct re_registers regs;
5636               regex_t private_preg;
5637               int len = strlen (string);
5638               boolean want_reg_info = !preg->no_sub && nmatch > 0;
5639             
5640               private_preg = *preg;
5641             
5642               private_preg.not_bol = !!(eflags & REG_NOTBOL);
5643               private_preg.not_eol = !!(eflags & REG_NOTEOL);
5644             
5645               /* The user has told us exactly how many registers to return
5646                  information about, via `nmatch'.  We have to pass that on to the
5647                  matching routines.  */
5648               private_preg.regs_allocated = REGS_FIXED;
5649             
5650 rizwank 1.1   if (want_reg_info)
5651                 {
5652                   regs.num_regs = nmatch;
5653                   regs.start = TALLOC (nmatch, regoff_t);
5654                   regs.end = TALLOC (nmatch, regoff_t);
5655                   if (regs.start == NULL || regs.end == NULL)
5656                     return (int) REG_NOMATCH;
5657                 }
5658             
5659               /* Perform the searching operation.  */
5660               ret = re_search (&private_preg, string, len,
5661                                /* start: */ 0, /* range: */ len,
5662                                want_reg_info ? &regs : (struct re_registers *) 0);
5663             
5664               /* Copy the register information to the POSIX structure.  */
5665               if (want_reg_info)
5666                 {
5667                   if (ret >= 0)
5668                     {
5669                       unsigned r;
5670             
5671 rizwank 1.1           for (r = 0; r < nmatch; r++)
5672                         {
5673                           pmatch[r].rm_so = regs.start[r];
5674                           pmatch[r].rm_eo = regs.end[r];
5675                         }
5676                     }
5677             
5678                   /* If we needed the temporary register info, free the space now.  */
5679                   free (regs.start);
5680                   free (regs.end);
5681                 }
5682             
5683               /* We want zero return to mean success, unlike `re_search'.  */
5684               return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5685             }
5686             
5687             
5688             /* Returns a message corresponding to an error code, ERRCODE, returned
5689                from either regcomp or regexec.   We don't use PREG here.  */
5690             
5691             size_t
5692 rizwank 1.1 regerror (errcode, preg, errbuf, errbuf_size)
5693                 int errcode;
5694                 const regex_t *preg;
5695                 char *errbuf;
5696                 size_t errbuf_size;
5697             {
5698               const char *msg;
5699               size_t msg_size;
5700             
5701               if (errcode < 0
5702                   || errcode >= (int) (sizeof (re_error_msgid)
5703             			   / sizeof (re_error_msgid[0])))
5704                 /* Only error codes returned by the rest of the code should be passed
5705                    to this routine.  If we are given anything else, or if other regex
5706                    code generates an invalid error code, then the program has a bug.
5707                    Dump core so we can fix it.  */
5708                 abort ();
5709             
5710               msg = gettext (re_error_msgid[errcode]);
5711             
5712               msg_size = strlen (msg) + 1; /* Includes the null.  */
5713 rizwank 1.1 
5714               if (errbuf_size != 0)
5715                 {
5716                   if (msg_size > errbuf_size)
5717                     {
5718                       strncpy (errbuf, msg, errbuf_size - 1);
5719                       errbuf[errbuf_size - 1] = 0;
5720                     }
5721                   else
5722                     strcpy (errbuf, msg);
5723                 }
5724             
5725               return msg_size;
5726             }
5727             
5728             
5729             /* Free dynamically allocated space used by PREG.  */
5730             
5731             #ifdef __APPLE__
5732             __private_extern__
5733             #endif
5734 rizwank 1.1 void
5735             regfree (preg)
5736                 regex_t *preg;
5737             {
5738               if (preg->buffer != NULL)
5739                 free (preg->buffer);
5740               preg->buffer = NULL;
5741             
5742               preg->allocated = 0;
5743               preg->used = 0;
5744             
5745               if (preg->fastmap != NULL)
5746                 free (preg->fastmap);
5747               preg->fastmap = NULL;
5748               preg->fastmap_accurate = 0;
5749             
5750               if (preg->translate != NULL)
5751                 free (preg->translate);
5752               preg->translate = NULL;
5753             }
5754             
5755 rizwank 1.1 #endif /* not emacs  */

Rizwan Kassim
Powered by
ViewCVS 0.9.2